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Abstract—We address the problem of how to store and process
data privately in cloud environments that employ state machine
replication. We show that the only known solution to the problem
(Yin et al., SOSP ’03) is potentially susceptible to attacks. We
then present a new protocol that is secure in the stronger
model we formalize. Our protocol uses only efficient symmetric
cryptography, while Yin et al.’s uses costly threshold signatures.

We implemented and evaluated our protocol. We show that
our protocol is two to three orders of magnitude faster than Yin
et al.’s, which is less secure than ours.

I. INTRODUCTION

State machine replication [34, 48] is fundamental and proven
software technique to enable fault-tolerant and highly avail-
able services. It has been deployed in an increasing num-
ber of online services and cloud computing platforms, in-
cluding Google’s Chubby [13] and Spanner [23], Microsoft
Azure [19], and Amazon Web Services [3].

In the hostile and untrusted cloud environments, where some
nodes in the cloud may be compromised or exhibit arbi-
trary behavior, Byzantine fault-tolerant (BFT) state machine
replication (e.g., [20]), one dealing with arbitrary failures and
malicious attacks, is particularly relevant.

However, it is notoriously difficult to achieve another es-
sential goal for secure cloud computing—confidentiality (i.e.,
data privacy) in replicated state machines. Here confidentiality
means that a service only reveals the information users autho-
rized to see. More broadly, in the client-server model, confi-
dentiality includes data protection for client requests, server
replies, and data stored and processed at the servers. Despite
significant progress in secure outsourcing and computation, it
has largely focused on the case of a single server (e.g., fully
homomorphic encryption [30]), replicated servers with limited
operations (e.g., storage systems), or generic and inefficient
multi-party computation (see [25]). None of these efficiently
achieve reliability and confidentiality for arbitrary operations.

The reason why maintaining both availability and confiden-
tiality simultaneously is challenging is straightforward: while
increasing the number of replicas reduces the possibility that
many of them can fail at the same time, it also increases the
chance that an adversary might gain control of the weakest
replica and read its state.

For this reason, confidentiality issue has become a fun-
damental obstacle to cloud storage and cloud computing
where replication plays a central role [41]. Also, as pointed

out by [53], the performance overhead and the difficulty in
protecting confidentiality are two major barriers that inhibit the
genuine utility of BFT protocols. After many years’ efforts, a
variety of BFT protocols and implementations [1, 5, 10, 20, 24,
27, 32] have improved their efficiency to the point that they
can be practical and useful in many situations (see, e.g., [10]).
However, the existing approaches to confidentiality are far
from satisfactory.

The only known solution to the problem that can support
arbitrary (non-deterministic) operations, confidential BFT state
machine replication, is due to Yin, Martin, Venkataramani,
Alvisi, and Dahlin (YMVAD) [53], which insightfully takes
advantage of separating BFT agreement from operation ex-
ecution. In their approach, an agreement cluster (AC) is
responsible for running a conventional BFT protocol to assign
unique sequence numbers to client requests. The execution
cluster (EC) then executes requests in sequence number order.
Between AC and EC is a distributed, reliable privacy firewall
(PF), consisting of a cluster of replicated filter nodes. It is used
to filter any malicious or inconsistent information sent from
execution replicas and therefore helps achieve confidentiality.

Their construction is not yet practical because it uses
expensive threshold signatures. We also find that in a broader
context their protocol neither strictly achieves safety in the
sense of reliable distributed systems nor does it consider how
to achieve request and reply privacy in the sense of reduction-
based provably secure cryptography.

Our contributions. In our paper we make the following
contributions:

We refine the notion of YMVAD confidential BFT
(CBFT) and formalize it as probabilistic interactive Tur-
ing machines.
We provide another look at the YMVAD protocol (here-
inafter C-BFT0), showing that any of its trivial instantia-
tions may be susceptible to attacks.
We provide a new and practical CBFT protocol, C-BFT,
which uses only efficient symmetric cryptography, as
opposed to C-BFT0 that uses costly threshold signatures.
We prove the correctness of C-BFT in our extended
security model.
We show that our CBFT protocol (with refined and
enhanced security notions) can be used to build a much
more efficient causality-preserving replicated scheme, a

1



primitive which was proposed by Reiter and Berman [42]
over two decades ago and has only found a public-key
cryptographic realization so far [16, 42].
We implemented and evaluated C-BFT. We show that
C-BFT is two to three orders of magnitude faster than
C-BFT0.

Fitting in the cloud infrastructure. While C-BFT0 is an
important first step towards a practical solution, it has not
received much attention since its invention. This is due to its
large overhead and the large number of (relatively expensive)
filter nodes in PF. Our CBFT protocol significantly improves
C-BFT0 by two to three orders of magnitude; in particular,
our PF is cryptography-free (assuming authenticated channels)
and can be implemented using computationally constrained
tools and hardwares. The improvement allows us to revisit the
YMVAD architecture. Indeed, our new architecture fits well
with modern cloud computing: AC and EC match control layer
and computing nodes in cloud computing respectively, while
PF can be realized using some existing tools already deployed
in popular cloud platforms, such as internal authorization
services, node auditors, load balancers, and intrusion detection
systems, or using other tools, say, trusted components [36, 47].

II. RELATED WORK

Efficient BFT protocols. Byzantine fault tolerance, or more
broadly, Byzantine agreement [35], handling failures beyond
crashes, has been a topic which attracted people from various
areas (e.g., theory, cryptography, security, systems, distributed
systems). Beginning with PBFT [20], a large number of
practical, asynchronous BFT protocols were proposed [1, 5,
20, 22, 24, 27, 32]. Our protocol C-BFT is general and can be
built on any of these protocols. Additionally, if the underlying
BFT protocol is secure against Byzantine clients (e.g., [22]),
so is C-BFT.
Confidentiality and Byzantine fault tolerance. Confidential-
ity is a central goal in secure distributed programs in practice.
However, it is non-trivial to extend existing distributed pro-
tocols to support this attribute. In particular, trivial methods
using TLS or SSH to protect confidentiality and integrity of
transmitted messages do not work, as they defend against
“outside” adversaries only.

There are a number of works aiming to achieve confi-
dentiality in distributed file systems or storage systems [2,
9, 18, 29, 31, 33, 40, 46]. These systems only support store and
retrieve operations (except that [40] additionally supports add
operations). However, YMVAD and ours strive to support
arbitrary state machine operations. Furthermore, ours is more
general than YMVAD as ours can handle both deterministic
and randomized operations, while YMVAD only supports
deterministic ones.
Separating agreement/control plane from execu-
tion/storage plane. YMVAD argued that the separation
of agreement that orders requests and execution that
processes requests for state machine replication enabled two
significant advantages over previous approaches—reducing

execution replication costs and enabling confidentiality. For
replicated storage, a similar idea of separating functions
that control metadata from those that store the payload
data, introduced in [2], was recently investigated to build
systems with stronger properties in both the replication-based
setting [15] and erasure-coded setting [4]. Our work bolsters
this line of research, demonstrating that with a more rigorous
and formal treatment, the separation of agreement and
execution for state machine replication can lead to a CBFT
with stronger security guarantee and a causality-preserving
replicated protocol [16, 42] without relying on public-key
cryptography.
Threshold cryptography and majority voting. YMVAD
extensively uses expensive threshold signatures. More efficient
threshold symmetric encryption and MACs [12, 37, 38] cannot
be used to replace threshold signatures in YMVAD. The
reasons are twofold. First, these primitives are not Byzantine
adversary resilient—one single distributed party can easily
attack the liveness and safety of the system. Second, each
distributed party has to communicate with one another, which
imposes high computational and bandwidth overhead.

We use a technique fundamentally different from threshold
signatures and threshold symmetric cryptography, i.e., we
leverage the idea of “majority voting,” one dating to von
Neumann [51]. One reason why we can use simple majority
voting is that non-faulty execution replicas always provide
randomized yet identical ciphertexts using a consistent random
coin (which is output by an underlying randomized BFT
protocol [43]—detail coming shortly). As a result, our privacy
firewall construction is unkeyed and cryptography-free (assum-
ing authenticated channels); it can be instantiated using much
less expensive devices.

III. PRELIMINARY AND SYSTEM MODEL

Notation. If n is an integer then [1..n] denotes the set
{1, · · · , n}. If x is a string then |x| denotes its length. If S is a
set then s

$← S denotes the operation of selecting an element s
of S uniformly at random. If A is a randomized algorithm then
we write z $←A(x, y, · · · ) to indicate the operation that runs A
on inputs x, y, · · · and fresh and uniformly random coins and
outputs z. We write z ←AO1,O2,···(x, y, · · · ) to indicate the
operation that runs A having access to oracles O1,O2, · · ·
on inputs x, y, · · · and outputs z. A function ε(l): N → R
is negligible if, for any positive number d, there exists some
constant l0 ∈ N such that ε(l) < (1/l)d for any l > l0.

A. Cryptographic Primitives

We provide formal definitions of security for the cryptographic
primitives used in the paper. All these primitives fall into the
category of symmetric cryptography.
PRF. A pseudorandom function (PRF) is an efficient keyed
deterministic map F: K×D → R where K, D, and R are key
space, domain, and range respectively. Let K = {0, 1}l for
simplicity. We define the PRF advantage of an adversary A,
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Advprf
F,A(1l), by

Pr[k
$←K : AF(k,·)(1l)=1]− Pr[A$(·)(1l)=1]

The oracle F(k, ·), on input m ∈ D, returns F(k,m). The
oracle $(·), on input m ∈ D, returns |F(k,m)| random bits. If
input m /∈ D, both oracles return ⊥.

In practice, AES is assumed to be a good PRF (and
also a good PRP, or pseudorandom permutation) with the
same input and output length (typically 128, or 256). With
appropriate assumptions, HMAC [7] is a provably secure PRF
with arbitrary input length. It is easy to extend any PRF with
some fixed output length to a PRF with arbitrary output length.
Symmetric encryption schemes. A symmetric encryption
(SE) scheme is a triple of algorithms (Gen,Enc,Dec). The key
generation algorithm Gen takes as input a security parameter l
and outputs a key k ∈ K (key space). The encryption algorithm
Enc takes as input a key k and a message m ∈ M (message
space), and outputs a ciphertext c. Enc can be probabilistic or
stateful. The deterministic decryption algorithm Dec takes as
input a key k and a ciphertext c, and outputs a message m.
The security notion we consider for an SE is IND$ [45]:
ciphertexts should be indistinguishable from random bits. It is
easily shown to imply all conventional chosen-plaintext attack
formulations of indistinguishability and semantic security. We
define Advind$

SE,A(1l) as

Pr[k
$← Gen(1l) : AEnc(k,·)(1l)=1]− Pr[A$(·)(1l)=1]

The oracle Enc(k, ·), on input m ∈M, returns Enc(k,m). The
oracle $(·), on input m ∈M, returns |Enc(k,m)| random bits.
If input m /∈M, both oracles return ⊥.

An authenticated encryption (AE) scheme has the same
syntax as a conventional encryption scheme except that the
deterministic decryption algorithm returns either a message
m ∈ M or else the distinguished symbol ⊥ (“invalid”). AE
provides both the privacy (we consider IND$ security) and
authenticity (i.e., no adversary can forge a new and valid
ciphertext).

When a message needs to be privacy-protected and authen-
ticated, there may exist additional information (termed asso-
ciated data) such as a packet header, which must be authen-
ticated. An authenticated encryption scheme with associated-
data (AEAD) [44], compared to an AE scheme, additionally
takes as input a header H in its encryption and decryption
algorithms. The privacy notion requires that ciphertexts be
indistinguishable from random bits except that the header is in
the clear. The authenticity notion requires no adversary be able
to forge either a new and valid ciphertext or an old ciphertext
with a new header.
Authenticated channels. Unless otherwise stated, we assume
that messages are authenticated, which can be easily realized
using message authentication code (MAC). This assumption
has two implications: first, it eliminates the forgery of mes-
sages on the links between two correct processes; second, with
authenticated channels, the IND$ secure encryption scheme

proposed in this paper is also secure in the sense of AE or
AEAD.

B. BFT State Machine Replication

We consider BFT replication problem where faulty replicas
can behave arbitrarily and a computationally bounded adver-
sary can coordinate faulty replicas to compromise the system.

A BFT protocol must satisfy safety (i.e., integrity) and
liveness (i.e., availability). Safety requires that a service cor-
rectly process clients’ requests. Liveness means that a service
operates without interruption. We consider practical BFT pro-
tocols whose safety holds in any asynchronous environment,
where messages may be delayed, dropped, altered, or delivered
out of order, and whose liveness is ensured assuming partial
synchrony [28]: synchrony holds only after some unknown
global stabilization time, and the bounds on communication
and processing delays are themselves unknown.

10 algorithm R-BFTpi,Π(k, 〈REQUEST〉) {at replica pi ∈ Π}
11 on receiving 〈REQUEST, id, t, op, oi〉 {oi : op input}
12 (s,Assign(〈REQUEST〉,n))

$←pΠ
i (s,〈REQUEST〉) {s : pi’s state}

13 if flag(op) = 0 then {if op is deterministic}
14 (s, 〈REPLY〉)← op(s, oi)
15 else
16 r←F(k,(id, t)) {preparing coins if op is non-deterministic}
17 (s, 〈REPLY〉)← op(s, r, oi)
18 send 〈REPLY〉

Fig. 1. R-BFT server-side algorithm for pi ∈ Π. All the replicas share the
same PRF key—k. Line 12 represents the conventional interactive agreement
procedure where an agreed sequence number n is assigned to 〈REQUEST〉 at
replica pi. In line 14, each time an operation is executed replica pi’s (internal)
state s will be updated.

Randomized BFT (RBFT). In (BFT) state machine repli-
cation, to keep states consistent, it is necessary to require
that operations for state machines be deterministic. But it is
easy to enhance conventional BFT protocols to handle some
randomized operations, as first described in BASE [43] (see
also [17]).

In particular, we need to feed “good” random coins to
state machines. We identify two requirements for random
coins: uniformity and matching. By uniformity, we mean that
the coins that correct replicas have for any operations are
distributed uniformly at random over some prescribed domain.
Note that the property does not involve cryptography or
adversaries. By matching, we mean that every correct process
outputs the same coin value for the same operation.

We describe a RBFT protocol, R-BFT, satisfying the unifor-
mity and matching properties. The basic idea is to run a pre-
determined PRF F : K ×D → R taking as input the request-
specific information to obtain the request-specific random
coin, which is fed to state machines. Concretely, all the state
machines initially need to maintain the same PRF F and share
the same PRF key k ∈ K. By request-specific information,
we mean certain information contained in the client request
message m (the timestamp t and the client identifier id) which
is used to bind the request. It serves as a request unique
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Fig. 2. YMVAD SBFT and CBFT Architectures. Fig. 2(a) presents
the SBFT architecture that separates agreement from execution. Fig. 2(b)
illustrates the CBFT architecture in a black-box manner; it consists of an
agreement cluster (AC), a privacy firewall (PF), and an execution cluster (EC).
Fig. 2(c) presents the concrete instantiation of YMVAD—C-BFT0, where AC
is reused as a row of PF. It tolerates one execution replica failure and two
filter node failures.

identifier. The coins are matching for all the replicas as the
PRF function is deterministic and its inputs are fixed and the
same. The coins are uniformly distributed at random as the
underlying PRF is indistinguishable from a random function
and input for each request is uniquely identified. We then feed
the PRF value as the needed coin each time it executes a
client request operation op on the operation input oi. Note
that the above procedure is independent of the underlying
consensus procedure, so it can be combined with any existing
BFT protocols. R-BFT algorithm is depicted in Fig. 1, running
by a set of N replicas Π = {p0, · · · , pN−1}.

IV. C-BFT0 ATTACK ANALYSIS

In this section we review YMVAD CBFT protocol—
C-BFT0 [53] and provide an attack analysis.
Review of C-BFT0. In a traditional BFT architecture, replicas
first agree on a linearizable order of client requests and then
execute these requests. YMVAD [53] showed how to sepa-
rate agreement from execution in BFT protocols (hereinafter
SBFT), as depicted in Fig. 2(a). Agreement cluster (AC) runs a
conventional BFT protocol and assigns unique sequence num-
bers to client requests. AC also generates cryptographically-
verifiable agreement certificates. AC uses 3f + 1 agreement
replicas to tolerate at most f failures. Then execution clus-
ter (EC) verifies the agreement certificates and executes the
requests in sequence number order. These execution replicas
do not communicate with one another and they execute the
requests independently. EC uses 2g + 1 execution replicas
to tolerate at most g failures. While SBFT slightly increases
the latency of BFT services, it also brings two immediate
benefits: first, it reduces the number of execution replicas
which might be expensive application-specific devices such
as supercomputers and network routers; second, the SBFT
architecture makes CBFT achievable.

It is easily seen that if some execution replicas and agree-
ment replicas collude, EC state information will be leaked. To
achieve confidentiality, they introduced privacy firewall (PF)

which lies in between AC and EC to filter incorrect and
inconsistent information (see Fig. 2(b)). Any client request
message and server reply message must go through PF. As
depicted in Fig. 2(c), YMVAD uses h+ 1 rows of h+ 1 filter
nodes per row to tolerate at most h faults, while providing
safety, liveness, and confidentiality. YMVAD heavily relies
on threshold signature to ensure these properties. At the
beginning, each replica in EC executes a client request and
returns a server reply. For a deterministic operation, non-
faulty replicas will share the same reply. Each replica in
EC also generates a signature share for a (g + 1, 2g + 1)
threshold signature on the reply such that g+ 1 or more valid
signature shares can be used to reconstruct a single threshold
signature. Each replica in EC then broadcasts the reply and
its signature share to the first row of PF. If no more than g
execution replicas fail, each non-faulty filter node at the first
row of PF will be able to reconstruct a threshold signature on
the reply. The reply and the reconstructed signature are then
subsequently sent to all filter nodes at the next row which need
to verify the correctness of the signature. Then they are sent
to next row and so on. For YMYAD, there are h+ 1 rows of
h+ 1 filter nodes per row. It is not hard to see that (1) there
exists at least one correct path between AC and EC which only
consists of correct filters and (2) there exists one row which
only consists of correct filter nodes and the rows below do not
have any information from any replicas in EC (whether benign
or malicious). The first observation ensures liveness even with
faulty filter nodes and the second observation prevents faulty
filter nodes from leaking information.

It is important to note that if h ≤ 3f , agreement replicas
can be re-used as a PF row.
Confidentiality analysis. YMVAD did mention “[R]equest
and reply bodies . . . are encrypted so that the client and
execution nodes can read them but agreement nodes and
firewall nodes cannot.” However, it did not specify how to
instantiate the encryption schemes.

In the reduction-based sense of modern cryptography, any
provably secure encryption scheme must be probabilistic (or
stateful). Otherwise, an adversary can at least tell if two cipher-
texts can be decryptable to the same message. It would cause
at least two problems if a probabilistic encryption scheme
were trivially adopted in C-BFT0 to encrypt server replies.
First, while randomness is indispensable to a secure encryption
scheme, C-BFT0 currently does not enable randomization.
Second, (even) if the execution replicas were able to run
randomized algorithms in the conventional sense, it would
invalidate the signing algorithm of threshold signature. This is
because the encrypted replies for a request from the execution
replicas should all be different after applying the probabilistic
encryption, but in order to reconstruct the threshold signature,
more than a half of the signature shares are shares signed for
the same encrypted reply.

The counters or nonces based encryption might well work,
but replicas need to agree with them. Also, one needs to handle
associated-data.

Alternative deterministic solutions, such as deterministic en-
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cryption [6] and message-locked encryption [8], only provide
adequate security for messages with high min-entropy.
Safety analysis. We find that C-BFT0 cannot handle faulty
clients. A single malicious client may easily attack the safety
of the replicated system, even if the underlying BFT in AC is
secure against Byzantine clients.

In YMVAD’s architecture, when each execution replica
receives the encrypted request message, it would decrypt it
independently. With a trivial encryption scheme, the cipher-
texts sent to execution replicas may not correspond to the
same underlying message. Therefore, if following the protocol
specification and executing the requests, execution replicas
would be in an inconsistent state.

YMVAD neither addressed the issue nor did it discuss any
instantiations of the encryption scheme used to encrypt client
requests. This is no slight overlook, and to give an example
among many, we consider the most trivial instantiation where
we assume that a client shares a pairwise key with each ex-
ecution replica, an assumption used to establish authenticated
channels. In this setting, using a secure encryption scheme to
encrypt the requests with pairwise keys fails to work, since
decryption is performed independently and each execution
replica cannot tell if others receive the same request.

Since there were no formal definitions of security with
respect to CBFT, our discussion regarding C-BFT0 has so far
been informal. We therefore provide formal definitions.

V. REFORMULATING CBFT

We follow YMVAD’s architecture (Fig. 2(b)) where there is
an AC, a PF, and an EC. In the following we assume that
messages transmitted respect the message flow of the archi-
tecture, i.e., messages transmitted between AC and EC must
go through PF. We emphasize that this is a strong assumption
and the architecture needs to be carefully deployed. The
contents of this section is a strengthening and extension of
YMVAD, providing a rigorous syntax, refining prior security
requirements, and adding new ones.

Syntactically, a CBFT scheme consists of the following
algorithms (Init, CEnc, ACA, ECE, PFF, CDec). The CBFT
initiation algorithm Init takes as input a security parameter l,
initializes the system and establishes all the necessary cryp-
tographic keys (i.e., the keys for encrypting client requests
and server replies and the keys for achieving Byzantine fault
tolerance in AC). A client encrypts a request via CEnc and
sends it to AC. The AC agreement algorithm ACA runs an
interactive BFT protocol to assign a sequence number n to
the client request and generates an agreement certificate. The
agreed, encrypted request and agreement certificate will then
be passed through PF to EC. The EC execution algorithm ECE
takes as input the information from AC, verifies the correctness
of the certificate, decrypts the client request, executes the
underlying operation op with the underlying operation input oi,
and sends an encrypted reply message to PF. The PF filtering
algorithm PFF is used to filter inconsistent and malicious
information sent from faulty replicas from EC. Client uses
CDec to decrypt the encrypted reply output from PF.

Property I. Request and reply privacy: Adversary can learn no
information about client requests and server replies while they are
transmitted.
Property II. Soundness: Adversary cannot generate encrypted
client requests that can be decrypted into different client requests.
Property III. Filter liveness: Consistent messages from a majority
of execution replicas can go through the filter.
Property IV. Filter safety: Inconsistent (and malicious) messages
from a minority of execution replicas are filtered.

Fig. 3. Confidentiality requirements.

As described in Fig. 3, we will decompose the
confidentiality-related notions into the following security
requirements: request and reply privacy, soundness, filter
liveness, and filter safety.

All the requirements described in Fig. 3 can be rigorously
formalized such that the computations made by the honest
parties and the adversary are modeled as probabilistic in-
teractive Turing machines. We assume that adversary can
corrupt replicas non-adaptively, as in all the other practical
BFT protocols.

When discussing these notions, agreement replicas take the
same responsibility as the filter nodes. We therefore do not
distinguish filter nodes from agreement replicas, and only
consider filter nodes for discussion. We assume that the
adversary can corrupt no more than g execution replicas and
h filter nodes, and learn their internal states.

We take a modular approach to define the security of CBFT;
namely, we separate PF definitions of security from others.
When defining other definitions of security, we can treat PF
as a black box that respects filter liveness and filter safety; it
is convenient to regard PF as a single correct node. We begin
by PF related notions.
PF Syntax and Definitions. Our privacy firewall notions,
filter liveness and filter safety, are rather specific, being tied
to our system architecture. We can be more general, defining
a privacy firewall in a way that depends on policies, and then
applying it to our case.

A privacy firewall PF is a pair of algorithms (Filter,
Extract) with respect to policy P , where P is a set of
predicates. The filter algorithm Filter takes as input a predicate
P ∈ P and b values X = (x1, · · · , xb) to be filtered, and
outputs a value σ. Filter may be probabilistic, in which case
it additionally takes as input a random coin. Filter may also
be keyed, in which case there is an additional key setup mech-
anism and Filter needs to take the key as input too. (YMVAD
PF is keyed as it relies on threshold signatures, but our PF that
will be described in §VI is unkeyed if assuming authenticated
channels.) The extract algorithm Extract is deterministic and
unkeyed. It takes as input σ and P and outputs the (desired)
result.

In YMYAD’s architecture (and ours below), the policy set
contains only a single predicate, and the Filter functionality
is to output the majority of results with the same logical
timestamp, and output ⊥ if there is no majority. Extract is also
a majority function run by clients. We can rigorously define

5



PF security notions following this syntax. Filter liveness, in
this context, simply means that on input X = (x1, · · · , xb)
chosen by adversary, the extracted value from σ must be a
majority result of X (or ⊥ if there is no majority). Filter
safety ensures that on input X chosen by adversary, σ cannot
leak any information other than the majority value of X .

Defining soundness in multicast encryption. Among all
these confidentiality-related notions, it is less intuitive how
to formalize the soundness notion, which is used to thwart
the safety attack. We consider the scenario where a (possibly
malicious) client sends a ciphertext to a set of recipients
(corresponding to execution replicas in the setting of CBFT).
The essence of the soundness security notion is to ensure that
each execution replica will have the same underlying plaintext
after decrypting the encrypted client requests. The notion is
a strengthening of the conventional correctness notion of an
encryption scheme.

We introduce a primitive—d-multicast encryption and then
formalize its soundness notion. We will use it to achieve CBFT
soundness. The definition makes sense in both the symmetric
and asymmetric cryptographic settings, but for simplicity, we
consider only the former. Let E = (MGen,MEnc,MDec)
be a d-multicast encryption scheme (to distinguish from the
conventional broadcast encryption) that encrypts a message
m ∈ M (message space) to d recipients. The key generation
algorithm MGen takes as input a security parameter l and
outputs d symmetric keys ki for i ∈ [1..d] shared between
a sender and each of the recipients. The keys might be
distributed via a trusted authority, generated independently
of one another, or obtained by running an interactive key
exchange/generation algorithm. The sender encryption algo-
rithm MEnc takes as input a message m and d keys, and
outputs a ciphertext c. It can be either probabilistic or stateful.
The deterministic recipient decryption algorithm MEnc takes a
ciphertext c and a key ki (i ∈ [1..d]) and outputs a plaintext m.

We impose the basic invertibility requirement on a d-
multicast encryption scheme: MEnc is injective on the message
space M. We define a strong form of soundness notion: any
malicious adversary cannot “cheat” by creating a ciphertext
which can be decryptable to different plaintexts by different
recipients. In particular, it cannot be the case where one replica
decrypts the ciphertext to a message m ∈M, while the other
decrypts it to ⊥ (i.e., an invalid ciphertext).

Formally, we consider in Fig. 4 the experiment that is
associated to an adversary A and a symmetric-key d-multicast
encryption scheme E = (MGen,MEnc,MDec).

We define the soundness-advantage of A in the above
experiment as Advsound

E,A (1l) = Pr[Expsound
E,A (1l) = 1]. We say

that E satisfies the soundness property if for any adversary A,
we have that Advsound

E,A (1l) is negligible in the security pa-
rameter l, where the probability is taken over the choice of
(k1, · · · , kd)

$←MGen(1l) and over the internal coins, if any,
of A. Notice that we do not need to provide the adversary
with the decryption oracle since all the secret keys are already
given. We can let the adversary be either computationally

20 Experiment Expsound
E,A (1l)

21 (k1, · · · , kd)
$←MGen(1l)

22 c
$←A(1l, k1, · · · , kd)

23 for i, j = 1 to d do
24 if i 6= j and MDec(ki, c) 6= MDec(kj , c) then
25 return 1
26 return 0

Fig. 4. Soundness experiment with respect to an adversary A and a d-
multicast encryption scheme E = (MGen,MEnc,MDec).

bounded or unbounded. If the advantage is always equal to 0,
we say that E has the perfect soundness property.

While there exist encryption schemes for multiple recip-
ients such as broadcast encryption, they fail to define any
soundness notion. A malicious adversary may yield ambiguous
ciphertexts that can be decryptable to different plaintexts by
different recipients. To our knowledge, the issue has not been
pointed out in broadcast encryption literature, but we find that
many (but not all) existing chosen ciphertext attack (CCA)
secure broadcast encryption constructions can defend against
the attack. We do not use them as they are too costly for our
purpose and we can achieve the same goal more efficiently.
We also note that Chow, Franklin, and Zhang [21] defined
a similar notion in the case of two recipients for a different
purpose.

Strictly speaking, the soundness property is implied by
the safety property. However, one must satisfy soundness to
achieve safety, and we choose to single out the soundness
security notion to highlight its importance.

It is not difficult to provide a secure multicast encryption
even when the keys for different recipients are generated
independently of one another. But as we will show, key
independence is not a requirement to achieve a secure CBFT
protocol.
Request privacy. The request privacy notion simply guaran-
tees privacy for request transmission. We consider the notion
of “indistinguishability from random bits under an adaptive
chosen-plaintext attack” for our d-multicast encryption scheme
E = (MGen,MEnc,MDec) with message spaceM. We define
Advreq-priv$

E,A (1l) as

Pr[(k1, · · · , kd)
$←MGen(1l) : AMEnc(k1,··· ,kd,·)(1l) = 1]

−Pr[A$(·)(1l)=1]

The oracle MEnc(k1, · · · , kd, ·), on input m ∈ M, returns
MEnc(k1, · · · , kd,m). The oracle $(·), on input m ∈ M,
returns |MEnc(k1, · · · , kd,m)| random bits. If input m /∈M,
both oracles return ⊥.

As we assume authenticated channels, we do not need to
consider authenticity notions or chosen-ciphertext attacks.
Reply privacy. The reply privacy notion aims to to ensure
privacy for reply transmission. Again, we consider the notion
of “indistinguishability from random bits” but simply for a
conventional symmetric encryption scheme with two parties
sharing a pairwise key (see §III). The reason why modeling
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for a conventional symmetric encryption is sufficient is that
due to use of PF, any adversary attacking reply privacy can
only see a single ciphertext output by the PF. However, it can
still mount chosen-plaintext attacks.

VI. CBFT CONSTRUCTION

A. Overview of C-BFT

C-BFT made three significant improvements to C-BFT0. First,
C-BFT is provably secure under the definitions we formally
described. Second, C-BFT eliminates all the public-key cryp-
tographic operations. Third, C-BFT supports arbitrary random-
ized processing.

We obtain these results by extending the idea of R-BFT,
leveraging an AEAD scheme (to achieve soundness), design-
ing a tailored, length-preserving encryption scheme for server
replies, and inventing a novel, cryptography-free PF.

Our PF takes h + 1 rows of 2h + 1 filter nodes per row
to tolerate h Byzantine node failures. When h = 1 (the most
applicable setting), it takes only one more filter node than that
of C-BFT0—note that the agreement replicas can be re-used in
both cases. Assuming authenticated channels, filter nodes do
not even need to perform any cryptographic operations. Thus,
our PF can be instantiated using much cheaper devices.

B. More Intuition

A crucial observation is that to achieve CBFT, each client does
not necessarily need to maintain different keys with different
execution replicas. In fact, sharing one common group key
does not damage the request and reply privacy notion due to
the soundness property and the use of PF. For our construction,
each client shares with all the execution replicas the same
symmetric keys k1 (for encrypting client requests) and k2
(for encrypting server replies). The keys can be generated as
part of the CBFT Init algorithm, either pre-distributed via a
trusted authority, or generated via an authenticated group key
exchange protocol [11].

To encrypt a client request message, a client uses an
AEAD scheme to form a single ciphertext with the key k1,
such that information like the client identifier and the unique
timestamp—which replicas in AC will use for agreement—is
authenticated but in the clear. The soundness property easily
follows in this setting: for any single AEAD ciphertext, all the
recipients (i.e., execution replicas) sharing the same key will
either all reject the ciphertext or all decrypt it into the same
plaintext. The scheme actually satisfies perfect soundness as
defined: the soundness-advantage of any adversary is 0. We
comment that many other tempting encryption methods (still)
simply fail (besides the one we mentioned in §IV). One such
incorrect method is that the client and all the execution replicas
share the same key for encryption, while the client and each
execution replica share a pairwise key for MAC authentication.
It is insecure as it is possible that some of execution replicas
having valid MACs can decrypt its own share, while others
having invalid ones simply reject the ciphertext.

Our approach to encrypting server reply messages at the
execution replicas is to generate random coins via the same

method as in RBFT and then feed them to a symmetric encryp-
tion mode of operation. Specifically, the execution replicas can
directly derive random coins, by applying a PRF on request-
specific information as defined in RBFT (the timestamp t
and the client identifier id) and on agreement information
(the view number v and the agreed sequence number n from
AC). This time, agreement information must be included,
because agreement and execution procedures are separated.
In addition, instead of deriving random coins and feeding
them into an existing symmetric mode of operation, we adopt
a “tailored,” length-preserving encryption scheme. Moreover,
we must yield random coins to support randomized operations
too. This is no problem given a PRF with the output-length
the same as the length of all the needed coins.

C. C-BFT Algorithms

The C-BFT algorithms are described in Fig. 5. We do not
choose to include authentication in the algorithms, since we
assume authenticated channels. As C-BFT0, C-BFT consists of
an AC, a PF, and an EC. AC uses 3f + 1 replicas (denoted
oi, i = [1..3f + 1]) to tolerate f failures, PF uses h+ 1 rows
of 2h + 1 filter nodes per row (denoted pi,j , j = [1..h + 1],
i = [1..2h + 1]) to tolerate h failures, and EC uses 2g + 1
replicas (denoted qi, i = [1..2g + 1]) to tolerate g failures.

We assume without loss of generality that the underlying
BFT protocol run by AC is sequencer-based [26], where there
is a designated primary that is responsible for ordering client
requests. Let id be the identifier of a client. Let v be the
current view number for the BFT protocol run by AC. Let
m = (id, t, op, oi) be a request message from client id,
where t is the timestamp, op is the operation, and oi is the
operation input. Let IA be an interactive agreement protocol
run by replicas Π in AC that takes as input an incoming
encrypted client request 〈REQUEST〉 and their local state sa, and
outputs an agreed sequence number n assigned to 〈REQUEST〉,
a corresponding certificate certn, and an updated state. An
execution replica runs Vrf to verify the correctness of certn
and executes the operation op. The function op takes as input
a state se, a random coin r1, and an operation input oi, and
outputs a result u and an updated state. In the ECE algorithm, a
PRF F will be used to generate a request-specific randomness
r1 to enable randomized operations, and a randomness r2 to
mask the execution result to achieve confidentiality.

Let E=(Gen,Enc,Dec) be an AEAD scheme. We build our
d-multicast encryption scheme E ′ = (MGen,MEnc,MDec)
from E such that all the corresponding algorithms are identical.
Let F : K × D → R be a PRF such that K = {0, 1}l,
D = {0, 1}|id|+|t|+|v|+|n|, and R = {0, 1}|r1|+|r2|. Initially,
we generate and pre-distribute two group symmetric keys
shared among a client id and all the execution replicas. Let
k1

$← Gen be the key for a multicast encryption scheme and
k2

$←{0, 1}l be the PRF key. H = (t, id) is the header, and
e = u⊕ r2 is the ciphertext. (H, e) will be sent to PF by
each replica in EC. Using authenticated channels built from
PRF-based MACs, the encryption is secure in the sense of an
AEAD [44].
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30 algorithm Init(1l)

31 k1
$←MGen(1l)

32 k2
$←{0, 1}l {PRF key}

33 v {current view number}
40 algorithm CEnc(k1,m)

41 send 〈REQUEST〉 $←MEnc(k1,m)

50 algorithm ACA(〈REQUEST〉)
51 (sa, n, certn)

$← IAΠ(sa, 〈REQUEST〉)
52 〈AGREE〉n←(〈REQUEST〉,n,certn)
53 send 〈AGREE〉n to PF

60 algorithm ECE(k1,k2,〈AGREE〉n) {at qi}
61 if Vrf(〈REQUEST〉, n, certn) 6= 1 or
62 MDec(k1, 〈REQUEST〉)=⊥ then abort
63 m← MDec(k1, 〈REQUEST〉)
64 parse m as (id, t, op, oi)

65 r ← F(k2, (id, t, v, n))
66 parse r as (r1, r2)

67 (se, u)← op(se, r1, oi)

68 H ← (t, id)
69 e← u⊕ r2

70 send c[i]← (H, e) to PF

80 algorithm PFF(c[1..2g + 1]) {from EC to client}
81 for {p1,j}2h+1

j=1 do {At first-row filter}
82 send c1[i]←maj{c[1..2g + 1]} to {p2,j}2h+1

j=1

83 for i = 2 to h do {At next h rows}
84 for {pi,j}2h+1

j=1 do
85 send ci[j]←maj{ci−1[1..2h + 1]} to {pi+1,j}2h+1

j=1

86 for {ph+1,j}2h+1
j=1 do {At h + 1 row}

87 send ch+1[i]←maj{ch[1..2g + 1]} to client

90 algorithm CDec(k1,ch+1[1..2h + 1])

91 return F(k2, (id, t, v, n))⊕maj{ch+1[1..2h + 1]}

Fig. 5. C-BFT = (Init,CEnc,ACA,ECE,PFF,CDec). We only include the PFF algorithm from EC to AC (lines 80–87), as the one for the other direction
(from AC to EC) is symmetric.

Our PF does not rely on a distributed threshold signature
scheme; instead, it uses an efficient majority vote procedure to
forward the correct and consistent information from a majority
of execution replicas, and filter the malicious and inconsistent
information that is not from a majority of execution replicas.
Assuming authenticated channels, filter nodes do not need to
perform any cryptographic operations.

Let’s describe our PF in more detail. First, each filter node at
the first row waits for g+1 consistent ciphertexts with the same
timestamp from a majority of execution replicas to decide a
correct ciphertext. Then each filter node will broadcast the
determined ciphertext to the filters at the next row. At each
of the next h levels in PF, we take the same majority vote
procedure to determine the correct ciphertext. On the one hand,
since there are 2h+ 1 filter nodes at each level and there are
at most h malicious filter nodes, there must exist a majority of
nodes which are correct. This ensures filter liveness, i.e., the
consistent messages (from a majority of execution replicas)
can always be forwarded. On the other hand, since there are
h+ 1 levels of filter nodes and there are at most h malicious
filter nodes, there must exist a level i of nodes which are all
correct. All the inconsistent and malicious information can be
filtered by this level of nodes, and all the malicious filter nodes
at the levels greater than i do not have any information other
than the consistent and determined ciphertext (from a majority
of non-faulty execution replicas). Thus, filter safety is satisfied.

Upon receiving ch+1[1..2h + 1] from the last row of PF,
the client sets the ciphertext c as maj{ch[1..2h + 1]}, where
maj{·} is a majority function. (This corresponds to the Extract
function of PF syntax in §V.) To decrypt, the client computes
u = F(k2, (t, id, v, n))⊕maj{ch+1[1..2h+ 1]}.
Theorem 1. If no more than f agreement replicas, h filter
nodes, and g execution replicas are faulty, then C-BFT is a
secure CBFT protocol.

All proofs can be found in our full paper.

D. Application to Causality-Preserving Replicated Service

We show how our CBFT protocol (with refined and enhanced
security notions we defined) can be used to build an efficient
and secure replicated service that respects request causality in
the sense of Reiter and Birman [42] and Cachin, Kursawe,
Petzold, and Shoup [16].

Causality-preserving replicated service. We begin by de-
scribing a request causality-preserving replicated service.
When a client issues a request to the replicated service,
some faulty replicas may create a new request which will be
executed before the request of the client. This will violate
the causal order of client requests. To illustrate the problem,
Reiter and Birman [42] considered a trading service that trades
stocks. When a client issues a request to purchase stock shares,
a faulty replica may be able to collude with a corrupt client to
issue a new request for the same stock. If the correct replicas
deliver the new request before that of the correct client, the
new request may adjust the demand for the stock and the
service may raise the price to the correct client. Consider
another interesting service that registers names on a “first
come, first served” manner [14]. A faulty replica may observe
an interesting name being registered, and it may then register
the name for another client.
Prior constructions. Reiter and Beirman [42] provided a
construction from an atomic broadcast protocol and a threshold
cryptosystem. The client can encrypt the client request with a
(f+1, 3f+1) threshold public-key encryption system, where f
is the maximum number of faults the system can tolerate. After
reaching an agreement on a ciphertext, each replica first uses
its corresponding decryption key to compute its decryption
share, and then sends the decryption share to the rest of the
replicas. Each replica must wait for f + 1 decryption shares
before it can recover the client request and then deliver the
request. Cachin, Kursawe, Petzold, and Shoup [16] revisited
the problem by rigorously formalizing the problem and built
a construction secure against CCA adversaries from a labeled
CCA threshold cryptosystem [50]. Clearly, both constructions
heavily rely on public-key threshold cryptosystem. This makes
the protocols less efficient, and moreover makes it difficult
to integrate the construction into an existing, practical BFT
protocols such as PBFT [20] and Zyzzyva [32] which use
only symmetric cryptography.

We claim that our CBFT protocol immediately leads to a
causality-preserving Byzantine replicated service.
Theorem 2. Any CBFT protocol that satisfies security notions
in §V is also a causality-preserving BFT protocol.
Note that C-BFT0 does not preserve causality, as no encryption
has been considered in their protocol. It is easy to see that
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a faulty agreement replica can see the underlying request
during their transmission and then forge a derived request. We
have shown that our CBFT protocol—C-BFT can be achieved
using only symmetric cryptography. Hence, we obtain the first
causality-preserving BFT protocol that uses only symmetric
cryptography and is much more efficient than previous con-
structions [16, 42]. Yet one should be also aware that our
causality-preserving protocol, despite being more efficient,
relies on a specific system architecture.

VII. IMPLEMENTATION AND EVALUATION

This section studies the performance of R-BFT, and compares
them with unreplicated services, the underlying BFT protocol,
R-BFT, S-BFT [53] (an implementation that separates agree-
ment from execution), and C-BFT0, on microbenchmarks.

A. Experimental Setup and Implementation

Our test setting comprises a replica cluster of up to 15
machines (2.13GHz Xeon processor, 4GB RAM) that are
connected through a 100Mbps switched LAN.

We utilize P-BFT [20], the first practical and most mature
BFT protocol, as our baseline and as the underlying BFT
protocol to instantiate more complex BFT protocols—R-BFT,
S-BFT [53], C-BFT0 [53], and C-BFT. All these protocols are
evaluated in the configurations that can tolerate a minimum
number of faulty replicas. Both P-BFT and R-BFT can tolerate
one faulty replica. S-BFT can tolerate one faulty execution
replica and one faulty agreement replica. Both C-BFT and
C-BFT0 can tolerate one faulty execution replica, one faulty
filter node, and one faulty agreement replica.

We use HMAC as the underlying PRF and as the MAC
algorithm to build authenticated channels. It is important to
use distinct keys to ensure provable security though. We
use a composed AEAD scheme to instantiate the multicast
encryption. Specifically, we apply CTR mode of operation
and then compute its HMAC. When instantiating C-BFT0, we
adopt an efficient, deterministic but insecure mode of operation
ECB as the encryption algorithm in EC. As explained, C-BFT0

is difficult to instantiate securely and we choose ECB just for
a relatively fair comparison.

We use ThreshSig [52] which implements Shoup’s RSA
threshold signature scheme [49]. While there are other thresh-
old signatures, they are either interactive or use more expen-
sive pairing-based cryptography. Since we adopt AES-128,
we use an equivalently secure RSA-3072 (following NIST
recommendation [39]). For an efficiency comparison, we also
test RSA with two smaller keys, where RSA-1024 has been
disallowed and RSA-2048 is still acceptable for most applica-
tions. Let C-BFT0-3072/2048/1024 denote C-BFT0 with RSA-
3072/2048/1024, respectively.

Concrete analysis is vital to evaluating modern crypto-
graphic protocols. YMVAD did not report the security pa-
rameter. Later on, Belisarius [40] pointed out the problem and
re-evaluated C-BFT0. The authors found that their implemen-
tation on C-BFT0, if following NIST recommendation, has a
much larger overhead than the one presented in YMVAD, and

therefore they reported RSA-128 in order to be in line with
YMVAD. While we do understand the experimental choice of
Belisarius, we comment that RSA-128 can be easily factored
within a second using a commodity laptop.

B. Microbenchmark Evaluation

We assessed the latency and throughput using the x/y mi-
crobenchmarks by Castro and Liskov [20], where clients send
x kB requests and receive y kB replies.

Table I shows the average latency of the protocols. We
find that P-BFT and R-BFT have almost identical latency
and outperform the others. Note that when testing the per-
formance of R-BFT, we only need to additionally perform a
PRF operation compared to P-BFT. Since S-BFT separates
agreement from execution, it adds an additional overhead.
While there is a performance impact, C-BFT’s latency remains
acceptable. For all the four micro-benchmarks, C-BFT is more
than two to three orders of magnitude faster than C-BFT0.
The reason remains that C-BFT uses only efficient symmetric
cryptography but C-BFT0 relies on rather expensive RSA
public-key threshold signatures.

Our latency experiment practically rules out the possibility
of using C-BFT0 in latency-critical applications. We go on
to evaluate the throughput of the rest of protocols using 0/0
microbenchmarks, as depicted in Fig. 6(a). (The results for
other microbenchmarks are similar and thus omitted.) R-BFT
achieves almost the same throughput as P-BFT. C-BFT has
around 50% of the throughput of P-BFT. When there are
around 80 to 90 concurrent clients, the network is satu-
rated and the throughput for all the four protocols becomes
steady. We also reported the latency vs. throughput experiment
in Fig. 6(b).

VIII. CONCLUSION

We studied a fundamental problem on how to generally
store and process data reliably and privately in replicated
state machines. We followed the architecture of YMVAD
that separates agreement from execution. But we went one
step further to provide formal definitions. Then we provided
an efficient construction C-BFT satisfying them. C-BFT uses
only symmetric cryptography, and fits well with the cloud
computing infrastructure. As an application, we show that
C-BFT can be used to build more efficient causality-preserving
BFT protocols.

We implemented and evaluated C-BFT on microbench-
marks. We show that C-BFT is at least two to three orders
of magnitude faster than C-BFT0, which is less secure than
ours and cannot generally deal with randomized algorithms.
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TABLE I
LATENCY (MS) FOR MICROBENCHMARKS.

Protocol 0/0 0/4 4/0 4/4
P-BFT 0.53 1.31 2.98 3.74
R-BFT 0.54 1.42 3.03 3.97
S-BFT 0.95 2.80 4.05 5.29
C-BFT 2.64 3.05 4.38 4.68

C-BFT0-1024 37.55 38.28 39.19 40.38
C-BFT0-2048 248.37 249.10 251.42 252.13
C-BFT0-3072 767.43 768.20 769.20 773.19
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