P2S: A Fault-Tolerant Publish/Subscribe Infrastructure

Tiancheng Chang
University of Stavanger,
Norway
tiancheng.chang@uis.no

%

Sean Peisert
University of California, Davis
peisert@cs.ucdavis.edu

ABSTRACT

The popular publish/subscribe communication paradigm, for build-
ing large-scale distributed event notification systems, has attracted
attention from both academia and industry due to its performance
and scalability characteristics. While ordinary “web surfers” typ-
ically are not aware of minor packet loss, industrial applications
often have tight timing constraints and require rigorous fault toler-
ance. Some past research has addressed the need to tolerate node
crashes and link failures, often relying on distributing the brokers
on an overlay network. However, these solutions impose significant
complexity both in terms of implementation and deployment.

In this paper, we present a crash tolerant Paxos-based pub/sub
(P2S) middleware. P2S contributes a practical solution by replicat-
ing the broker in a replicated architecture based on Goxos, a Paxos-
based fault tolerance library. Goxos can switch between various
Paxos variants according to different fault tolerance requirements.
P2S directly adapts existing fault tolerance techniques to pub/sub,
with the aim of reducing the burden of proving the correctness of
the implementation. Furthermore, P2S is a development frame-
work that provides sophisticated generic programming interfaces
for building various types of pub/sub applications. The flexibility
and versatility of the P2S framework ensures that pub/sub systems
with widely varying dependability needs can be developed quickly.

We evaluate the performance of our implementation using event
logs obtained from a real deployment at an IPTV cable provider.
Our evaluation results show that P2S reduces throughput by as little
as 1.25% and adds only 0.58 ms latency overhead, compared to its
non-replicated counterpart. The performance characteristics of P2S
prove the feasibility and utility of our framework.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Computer Communi-
cation Networks—distributed systems; D.2.8 [Software Engineer-
ing]: Metrics—performance measures; D.2.11 [Software Archi-
tectures]: Patterns

*S. Peisert is also with Lawrence Berkeley National Laboratory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DEBS ’14, May 26-29, 2014, Mumbai, India.

Copyright 2014 ACM 978-1-4503-2737-4 ...$15.00.

Sisi Duan
University of California, Davis

sduan@ucdavis.edu

Hein Meling
University of Stavanger,
Norway
hein.meling@uis.no

Haibin Zhang
University of California, Davis
hbzhang@ucdavis.edu

General Terms

Experimentation, Measurement, Performance

Keywords
Fault tolerance, Paxos, Publish/Subscribe, IPTV Application

1. INTRODUCTION

The publish/subscribe communication pattern for constructing event
notification services has strong performance and flexibility charac-

teristics. While typical “pub/sub” services such as consumer RSS

news feeds may tolerate some level of message loss, enterprise ap-

plications often demand stronger dependability guarantees. As a re-

sult, pub/sub has become an important cloud computing infrastruc-

ture and is widely used in industry, e.g., in Google GooPS [1], Win-

dows Azure Service Bus [2], Oracle Java Messaging Service [3],

and IBM WebSphere [4].

Significant effort has been devoted to developing reliable pub/-
sub systems [5—13]. Most of them cope with broker crashes and/or
link failures, ensuring that messages are eventually delivered. While
the weak fault tolerance is sufficient in some systems, other appli-
cation domains demand stringent delivery order of their messages.
Only a handful of prior published research papers have discussed
how to achieve total ordering in reliable pub/sub systems [8—10]. In
order to guarantee total ordering in the presence of failures, virtu-
ally all past published work relies on an overlay network topology.
For each new type of topology, a different algorithm must be in-
troduced, adding significant complexity both in terms of algorithm
correctness proofs, implementation, and deployment. Therefore,
industrial deployments tend to rely on the more established cen-
tralized architecture instead of decentralized overlay topologies.

Traditional fault tolerance techniques based on Paxos [14] can
provide total ordering and guarantee safety even in the presence of
any number of failures. However, liveness cannot be ensured in pe-
riods of asynchrony. Building a reliable pub/sub system based on
an existing, proven approach, reduces the effort required to prove
the correctness of algorithms since the protocol can be proven cor-
rect by refinement from the original algorithm. However, adapting
traditional fault tolerance techniques to pub/sub systems is chal-
lenging. Intuitively, every broker can be replicated, which can be
extremely impractical. Total ordering on every message can be
overkill since different messages may require different ordering se-
mantics. For instance, per-publisher total ordering is sufficient for
publications from a single publisher to multiple subscribers. On the
other hand, the topology of brokers in pub/sub systems varies from
a single centralized broker to very large-scale overlays. Replication
of brokers may impose adjustment of pub/sub overlays, especially

when the brokers are replicated on demand. Therefore, manage-
ment of replication should impose minimum overhead.

In this paper, we propose a framework for building reliable pub-
/sub systems that directly adapts existing fault tolerance techniques
to pub/sub. At the core of our pub/sub infrastructure is our crash
fault tolerance library and a pub/sub interface. Our library guar-
antees fault tolerance through replication, and ensures strong con-
sistency using Paxos to order publications. Our fault tolerance li-
brary can switch between different consistency protocols depend-
ing on application specific fault tolerance requirements. On the
other hand, the pub/sub interface communicates between applica-
tion level roles (publishers, subscribers, and the brokers) and the
replication library. The interface takes publications that must be
totally ordered, and pass them on to the replication library as re-
quests and totally orders them. The messages are then delivered to
the corresponding subscribers in order.

We have designed P28, a topic-based crash tolerant pub/sub sys-
tem based on a replication library Goxos [15, 16], a Paxos-based
Replicated State Machine (RSM) [17] framework written in the Go
programming language [18]. P2S is motivated by the simplest pub-
/sub architecture that is employed in several industry settings: pub-
lishers and subscribers with only a centralized broker. Since the
centralized broker becomes a single point of failure, we replicate
the broker to achieve resilience. To ensure total ordering, a Paxos-
based library is run among the replicated brokers. Although we
adopt the architecture of P2S directly from existing fault tolerance
protocols, we are not aware of any other published work discussing
the implementation of such solutions and therefore the performance
characteristics have previously not been explored and published.
We further evaluate the performance of P2S using recorded event
logs obtained from a real deployment of event loggers at about
180,000 homes connected to an IPTV cable provider. Our evalu-
ation results show that P2S causes as low as 1.25% reduction in
throughput and only 0.58 ms end-to-end latency overhead com-
pared to its non-replicated counterpart.

Our paper makes the following key contributions:

1. We implemented P2S, the simplest architecture based on the
framework, a topic-based crash tolerant pub/sub system with
centralized replicated brokers.

2. We demonstrate the utility of P2S through experiments us-
ing recorded data logs obtained from an IPTV application
deployed at a national telco operator. The evaluation results
show that P2S achieves total ordering in the presence of fail-
ure with low overhead compared to its non-replicated over-
head.

3. We present a framework for building reliable pub/sub sys-
tems that directly adapts existing proven fault tolerance ap-
proaches, with a relatively simple correctness proof and im-
plementation. The framework is flexible and versatile enough
to be used in future development.

The rest of the paper is organized as follows: first, we introduce
some background for our work in §2. In §3, we depict design and
development details of our framework. Then we show experimen-
tal results in §4. We present related work in §5 and conclude by
reviewing our contributions in §6.

2. BACKGROUND

In this section we present background for our fault-tolerant pub/sub
system, P2S. We begin by introducing Paxos, a well-known crash
fault-tolerant consensus protocol on which we base P2S. We then
briefly summarize the pub/sub architecture on which we base P2S.

2.1 Fault Tolerance

The Paxos protocol [14, 19] is a fault-tolerant consensus protocol,
in which a set of participants (our replicas) try to reach agreement
on a value. For our purpose, we can use multiple instances of Paxos
to agree on a sequence of values (or commands) sent to an RSM.
This is also called Multi-Paxos. With Paxos, the participants can
reach agreement when at least f 4 1 of the participants are able to
communicate, where f is the number of replica failures that can be
tolerated. One of the nice properties of Paxos is that it guarantees
that consistency among the replicas will never be violated even if
more than f replicas fail. It achieves this property at the expense
of liveness. That is, if more than f replicas fail, or if fewer than
f+ 1 replicas are able to communicate, then Paxos cannot make
progress. Ensuring strong consistency among replicas is an impor-
tant property, useful for a wide range of systems, including pub/sub
systems. This is related to the fundamental tradeoff between strong
and weak consistency.

We now explain how one instance of Paxos might operate in the
pub/sub paradigm. First suppose that the participants must be made
to agree on a single value or command to execute on our broker
RSM. This command can be considered as a publication. Thus,
the following is concerned with only a single command/publica-
tion. Paxos is often explained in terms of two phases, where the
first phase is only invoked initially and to handle failures, while the
second phase represents the normal case operation, and must be
performed for every value to be agreed upon.

Paxos proceeds in rounds, where in each round there is a single
replica designated as the proposer, also called the leader. Figure 1(a)
depicts the normal case operation where the proposer is correct.
During the normal case operation, the proposer chooses a value
and sends an ACCEPT message to a set of replicas called acceptors.
If an acceptor accepts the value, it sends an LEARN message to all
the replicas. The value is chosen when a replica receives LEARN
messages from a majority of replicas.

When the current proposer is suspected to be faulty, another
replica may assume the role of proposer. To be effective as pro-
poser, it needs to collect support from a majority of the replicas.
It does so by broadcasting a PREPARE message to the other repli-
cas. Upon receiving the PREPARE message, a replica stops accept-
ing messages from the old proposer and replies to the new proposer
with a PROMISE message, and includes the value chosen in its last
round. When the leader collects a set of PROMISE messages from a
majority of replicas, it either selects a value if at least one replica
accepts it, or any value, if no replica includes any values in their
PROMISE messages. Afterwards, replicas proceed as in normal case
operation described above. Figure 1(b) shows the leader change
phase of Paxos.

For a more comprehensible description of Paxos, please see [20].

Po

I
P, —+——=ACCEPT: LEARN L
I I

p7 1 Il
(a) The normal-case operation

Po = " |
P, —e=—PREPARE L le< ACCEPT -
I \

| __PROMISE
p, —

(b) Paxos leader/proposer change

Figure 1: The Paxos Protocol.

2.2 Pub/Sub

‘We build on the pub/sub architecture described by Eugster et al. [21],
as illustrated in Figure 2. In a topic-based pub/sub system, sub-
scribers express their interests in certain types of events, and are
subsequently notified with publications, generated by publishers.
Brokers are placed at the center of the infrastructure to mediate
communication between publishers and subscribers. This event-
based interaction provides full decoupling in time, space, and syn-
chronization between publishers and subscribers. We assume topic-
based pub/sub [21], where messages are published to topics, and
subscribers receive all messages sent to the topics to which they
subscribe.

Publisher

Unsubscribe() R
.

-

e Subscribe()
Update() A
Routing
Table
Publisher | ;) o Sy
-~ Filer) =~ A (Y oty

Brokers

Publisher

Figure 2: Publish/Subscribe architecture with three agent roles

In this paper, we address broker crash failures in an asynchronous
model, where messages can be delayed, duplicated, dropped, or de-
livered out of order. P2S employs a simple pub/sub architecture:
between publishers and subscribers is a set of 2f 4 1 replicated
brokers, among which up to f broker failures are tolerated. The
replicated brokers can be in one or more administrative domains,
perhaps geographically separated.

The protocol provides both safety and liveness as defined below.
The safety property is also referred to as total order, which is de-
fined in multiple ways in the pub/sub literature. For instance, per-
publisher total order ensures that messages sent by a single pub-
lisher are totally ordered. Our system aims to achieve the strongest
safety properties—pairwise total order—where replicated brokers
behave like a centralized broker.

o (Pairwise total order (Safety)) Assume messages m and m’
are delivered to both subscribers p and ¢, m is delivered be-
fore m’ at p if and only if m is delivered before m’ at q.

o (Liveness) If a message is delivered to a subscriber, all cor-
rect subscribers to the same topic eventually receive the same
message.

3. P2S

Our P2S framework is built on our existing Paxos-based RSM li-
brary, Goxos [15, 16,22]. For higher level pub/sub application
builders, P2S provides a generic programming interface.

This section introduces details of the original Goxos implemen-
tation, along with some changes necessary in order to adapt Goxos
to the pub/sub model. We also present the P2S system architecture,
programming APIs, some application-specific implementation de-
tails, and the core broker algorithm that runs inside each P2S bro-
ker. Essentially, when messages are sent by clients (either publish-
ers or subscribers) to brokers, they are handled by the Goxos li-
brary. Goxos treats client messages as Paxos requests, orders them
accordingly, and delivers them to the broker application layer. The
broker then forwards the messages to the subscribers according to
the message type (topic).

3.1 Goxos Architecture and Implementation

Goxos provides the fault-tolerant library for P2S. That is, P2S im-
plements Goxos interfaces to replicate its broker. As long as no
more than f brokers fail, all failure handling is managed inter-
nally in the underlying Goxos framework in the manner that Paxos
originally describes and will not be observed by publishers or sub-
scribers. Thus, Goxos provides a much greater degree of tolerance
to crashes compared to a traditional broker-based pub/sub system.

Using Goxos for replicating the broker, one of the replicas will
serve as the leader to handle client requests. A client, either a pub-
lisher or a subscriber, first reads a configuration file that contains
information about the location of the replicas. Using this informa-
tion, the client connects to the first replica, which is usually the
leader. If it is not the leader, the client attempts to connect to the
next replica in the list. The leader receives the client’s connec-
tion attempt, then establishes the connection, and stores the client
connection for further interactions. The client then is able to send
requests to either issue a publication, a subscription, or unsubscrip-
tion to the leader. Upon receiving a valid client request, the leader
treats the request as a Paxos proposal and disseminates it to all
Goxos replicas to achieve consensus. Thus, each replica decides
on the ordering of potentially several competing requests and then
executes them in order. Then finally, the execution result is replied
back to the client.

This original implementation does not match the pub/sub model
because it acts strictly in the classic request-reply style. That is, it
lacks the logic to handle message forwarding, which is necessary
when a request, e.g. a publication, should be forwarded to sub-
scribers. We therefore modify Goxos so that when a broker replica
executes a client request, it introspects the message type. If it is
a subscription or unsubscription, the replica will query and update
its local subscription table. If it is a publication, the replica will
deliver the publication to each of the subscribed clients. Details are
given in §3.4.

REPLICATED SERVERS

(7
‘ Acceptor

Paxos Module Proposer

Network Module

Demuxer

Liveness Module

HB Emitter
J

-

Figure 3: Goxos Architecture [22].

However, we first examine the internals of the Goxos frame-
work. Figure 3 shows the main modules of Goxos, which we or-
ganize into three parts: first, the Paxos module, which includes
the complete Paxos protocol. Second, the Network module, which
handles all networking in Goxos. The Network module contains a
Demuxer and a Sender as submodules. The Demuxer handles all
incoming connections and relays received messages to the appro-
priate Paxos module at the local replica for further processing. The
Sender module is responsible for sending messages to other repli-

cas per request from other Goxos modules. These two modules,
taken together, emulate remote channels between Goxos agents.
Finally, the Liveness module, which handles the failure detection
and leader election necessary for Paxos. The three different mod-
ules communicate with each other through Go’s channels. In the
figure, a single-ended arrow pointing from a source module to a
destination module signifies that the source can send a message to
the destination over a one-way channel. A double-ended arrow sig-
nifies that both modules can send and receive to one another over
a two-way channel. For example, the Demuxer module sends mes-
sages to the proposer, acceptor, and learner (which are in the Paxos
module). Since Paxos itself must be able to handle many concur-
rent activities, the Liveness module, Network module, and Paxos
module are all implemented as concurrently executing goroutines.

As a base framework for building fault-tolerant services, Goxos
offers sophisticated user interfaces for higher level applications to
invoke. Listing 1 shows four main interfaces available to applica-
tion developers.

Listing 1: Goxos interface.

type Handler interface {
Execute(req [Ibyte) (resp [Ibyte)
GetState(slotMarker uint) (sm uint, state [lbyte)
SetState(state [lbyte) error

}

func NewGoxosReplica(uint, uint, string, app.Handler) *Goxos
func Dial() (*Conn, error)

func (c *Conn) SendRequest(req [lbyte) ([lbyte, error)

Server applications can create a replicated service with the
Goxos.NewGoxosReplica function. This will construct a new
replica. The first two arguments of NewGoxosReplica are the id
of the replica and the id of the application. The third argument is a
string describing the application. Finally, the last argument is a type
that implements the app.Handler interface. The app.Handler
interface must be implemented by an application that uses the repli-
cation library. This interface defines several methods that must
be implemented on the type: Execute, GetState and SetState.
The first method, Execute, takes a byte slice, which should be a
command that can be executed in the application. The Execute
method also returns a response from the application in the form of
a byte slice. The second and third methods, GetState and Set-
State, are necessary to incorporate a new replica into the system,
after the running replicas have made changes to their state, after the
initial state.

The client library for Goxos is used to connect to the Paxos repli-
cas, as well as to send and receive responses. The client connection
can be created with the Dial method in the library. This method
returns a Conn, representing a connection to the whole replicated
service. All of the work of handshaking with the servers and iden-
tifying the leader is abstracted away. The most useful method on a
Conn is SendRequest, which can be used to send requests to the
replicated service, i.e. the group of servers. The client request is a
byte slice, meaning that if the application wants to send Go structs
or other complex data types as commands to the replicated service,
it first must marshal them into byte form. Similarly, the return value
is also a byte slice, which represents the response from the service.
Note also that a client must wait for a response from the Goxos
servers, or more precisely the leader, before it can send the next
request.

3.2 System Architecture and API

P2S, as a fault-tolerant pub/sub service, is comprised of a client li-
brary, a replicated server cluster with the Goxos library as the core,
and a client handler deployed at servers. The client handler re-
side at the servers and receives messages from client applications
(publishers and subscribers). The client library is used by clients
to communicate between the client handler at the servers. The
replicated server cluster handles all incoming client requests via
the client handler, and orders requests to achieve total order, even
in the presence of failures. Finally, the server application executes
the ordered client requests. Figure 4 shows the P2S architecture.

[Publisher } [Subscriber }

‘ P2S Client Library ’ ‘ P2S Client Library ’
Publish Ack Subscribe Notify

[P2S Client Handler]
Connect Response
[P2S Replicated Server Cluster]

[P2S Server Application (Broker) }

Figure 4: P2S System Architecture.

The P2S client library offers standard pub/sub style applications
a set of client APIs. The client library communicates with servers,
sends out client requests (which can be publications, subscriptions,
or unsubscriptions), and receives corresponding responses for the
client application to interpret. As shown in Listing 2, the library
defines a pair of data structures that applications must use, two
standard interfaces, and several methods.

Listing 2: P2S Client Library.

type Request struct {
Ct CommandType
Cid string
Topic string
Content string

}

type Response struct {
ToType CommandType
Ack string
Topic string
Content string
Subs [1string

}

type PublicationManager interface {
Publish(topic, content string)
}

type SubscriptionManager interface {
Subscribe(topic string) chan [lstring
Unsubscribe(topic string)

}

func PDial(account string) PublicationManager
func SDial(account string) SubscriptionManager
func (sm *submngr) awaitPublications(notifyChan chan []string)

Request and Response define the data format that client appli-
cations must use. Ct in Request and ToType in Response rep-
resent the command type, which can be ’Publish’, Subscribe’, or
’Unsubscribe’. Cid in Request denotes the client ID, which is
used by servers as a key to identify the corresponding client con-
nection. Topic and Content represent publications and subscrip-
tions. Lastly, Subs in Response is an array of subscribers’ ID that
is filtered by the servers for publication delivery.

The interface PublicationManager is implemented by a pub-
lisher’s application. Publish calls are used by the application to
issue a publication. Publish takes two arguments as input: the
topic and content of the publication. Similarly, the interface Sub-
scriptionManager is implemented by a subscriber’s application.
This interface has two methods, Subscribe and Unsubscribe,
both taking a string of topic as an argument. The Subscribe re-
turns a channel on which string slices can be sent. This channel
is used by the awaitPublications method, which is used by a
subscriber to wait for publications on a topic for which it has pre-
viously subscribed through the Subscribe method.

Both PDail and SDial are called when an application initiates.
They return instances of PublicationManager and Subscrip-
tionManager, respectively, that the application later invokes.

The P2S client handler is initiated on server startup. The client
handler is the frontend of the replicated server cluster that handles
client connections. It receives connection attempts from clients,
stores client requests (a publication or subscription), passes the re-
quest to the backend P2S server application for filtering, and re-
ceives the processed result, and finally sends back the response to
relevant clients. The processed result may either be an acknowl-
edgement to a publisher or a publication for which there are match-
ing subscribers. Listing 3 shows the set of functions in the client
handler library.

Listing 3: P2S Client Handler.

func (ch *ClientHandler) greetClient(conn net.Conn)
func (ch *ClientHandler) handleRequest(req *Request)
func (ch *ClientHandler) handleResponse(resp *Response)

The greetClient function starts up an infinite loop waiting
for potential client connection attempts. It responds to the Dial
method that the client calls; it identifies the client address and ID,
then stores the client connection object in a local connection pool.

The handleRequest function receives client requests, checks
each request to see if it has been executed before, generates a re-
sponse for new request, and stores both the request and response.

The handleResponse function is called immediately after a re-
sponse is generated by the handleRequest method. handleRe-
sponse first loops over the client connection pool, identifies the
client that sent the request, then pushes back the response to the
client. The handleResponse function then introspects the request
type. If the request is a publication, handleResponse initiates the
filtering, finds the subscribers that are interested in the topic in the
client connection pool, and delivers the publication to all the sub-
scribers.

Finally, the P2S replicated server cluster is the service with
our modified Goxos framework as the core. It does not differen-
tiate between different client message types. It simply treats each
client message as a Paxos proposal and runs it through the consen-
sus protocol. It then passes the client message to backend server
application for interpretation.

3.3 ZapViewers Application

In order to evaluate the capabilities of P2S, we built a fault tolerant
TV viewer statistics application based on an existing centralized
(non-replicated) pub/sub system [23,24] deployed at a real IPTV
operator. We refer to this as our ZapViewers application. In our
evaluation, we use recorded event logs from the real deployment.

A high-level architecture of our ZapViewers application is shown
in Figure 5. The application consists of three parts: event pub-
lishers (set-top boxes), subscribers (clients interested in viewership
statistics), and a replicated broker. A P2S event publisher simu-
lates a fraction (around 180,000) of IPTV set-top boxes (STBs) de-
ployed at customer homes receiving IPTV over a multicast stream.
Each STB records viewers’” TV channel change information, and
sends the event to the IPTV operator’s server. The publisher ac-
complishes this simply by calling our Publish() method. Based
on these events, the broker computes the TV viewership.

P2S Event Publisher P2S Event Publisher

P2S Brokers

P2S P2S P2S
subscriber subscriber subscriber

Figure 5: ZapViewers Application Architecture.

A P2S subscriber can either be television broadcasters or com-
mercial entities interested in TV viewership statistics. Such a sub-
scriber is usually concerned about ratings of TV channels, and
viewers’ channel change behavior. The subscriber that we imple-
mented informs the server of its interested topics, such as top-N
most viewed TV channels or viewership of some specific channels.
The broker then notifies each subscriber of the corresponding statis-
tics. The subscriber calls the Subscribe () method to inform the
brokers of their interest.

P2S brokers are replicated server applications that appears as a
fault-tolerant broker to external event publishers and subscribers.
P2S brokers rely on the Goxos framework as their core by imple-
menting system APIs such as the Handler interface as described
in previous sections. The brokers implement several functions to
collect events and computes statistics, including the two shown in
Listing 4.

Listing 4: ZapViewers application interface.

func numViewers(channel string) int
func computeTopList(n int) []*zl.ChannelViewers

Function call numViewers(channel string) takes a chan-
nel name as input from a P2S subscriber and returns that channel’s
viewership information. Function call computeTopList(n int)
returns a list of the n most viewed channels at a particular instant
to the subscriber.

The P2S publisher can generate two event types as follows:
(DATE, TIME, STB-IP, TOCH, FROMCH)
(DATE, TIME, STB-IP, STATUS)

DATE and TIME mark the date and timestamp that the event is
triggered. STB-IP is the IPv4 address of the sending STB unit.
TOCH and FROMCH indicate the new channel and the previous
channel that the STB unit is tuned in on. STATUS is a change in
status of the STB, which is either volume change on a scale of 0—
100, mute/unmute, or power on/off. The event is encoded in text
format, and its size is typically less than 60 bytes.

Events have either 4 or 5 fields. An event with 5 fields represents
a TV channel change event, and such an event does not contain
STATUS. An event with 4 fields contains a STATUS in the 4th field,
but does not have the fields TOCH or FROMCH.

3.4 Broker Algorithm

The core of our P2S application is the replicated service provider,
the broker. A broker does a handful of back-end jobs, including
maintaining subscriptions, storing P2S events as publications, fil-
tering and matching, and delivering publications to subscribers. We
explain the essentials of the broker algorithm in the following.

Algorithm 1 Broker Algorithm

1: Initialization:
2. ST {Subscription Table}
3: ReqChan {Request Channel }
4: RespChan {Response Channel }
5: PropChan {Proposer Channel}
6: R {Reply Queue}
7: Paxos {Paxos Variant}
8 P {Message Type: Publication}
9: 8§ {Message Type: Subscription}
10: leader {Current leader}
11: on event req < ReqChan {Monitor Request Channel}
12: handleRequest(req)
13: on event resp <— RespChan {Monitor Response Channel}
14: handleResponse(resp)
15: on event prop < PropChan {Monitor Proposer Channel }
16: executePaxos(prop)
17: on event executePaxos(prop) {Execute Through Paxos}
18: RespChan < genResp(prop)
19: if prop.Type == S then
20: update(ST) {Update Subscription Table}
21: on event handleRequest(req)
22: if myid == leader or allowDirect[Paxos] then
23: if req is new then
24: PropChan < req {Send into Paxos Module}
25: else ack(R . find(req)) {Re-reply old Request}
26 else redirect(req) {Redirect to Leader}
27: on event handleResponse(resp)
28: R.add(resp)
29: ack(resp) { Acknowledgement}
30: if resp.Type == P then {Invoke Publication Delivery }
31: C = filter(ST) {Filter and Match}
32: deliver(C, resp) {Deliver Publication}

A brokers maintains the following variables: the subscription table
ST, the channel for subscription and publication requests ReqChan,
the channel for acknowledgements and to-be-delivered publications
RespChan, the channel for sending proposals to Paxos PropChan,

the queue of replies &, the Paxos variant in use Paxos, and two
message types for introspection Publication and Subscription.

When a broker starts up, it initializes several routines: monitor-
ing the request channel ReqChan, the response channel RespChan,
and the proposer channel PropChan. When a broker receives a
new client request, it invokes the handleRequest(req) method. The
handleRequest(req) function call first checks if itself is the current
Paxos leader. If not, it checks whether the Paxos variant in use per-
mits direct message routing between non-leader replicas and the
client. Fulfilling either of the two conditions means that the request
is handled immediately. Otherwise, the broker redirects the request
to the Paxos leader.

The broker checks if the request is a new one. If so, it sends the
request on the proposer channel PropChan, triggering a run of the
Paxos algorithm. If it is an old request, it simply finds the response
in the reply queue by K. find(req), and ack() the client once more.

When a request is sent on the proposer channel, the broker in-
vokes executePaxos(prop) and the request is passed through Paxos.
The execution result generated by genResp(prop) is sent into the
response channel RespChan immediately. In addition, the broker
introspects the message type and if it is a subscription, the broker
updates the subscription table ST .

On detecting a new response from channel RespChan, the broker
calls handleResponse(resp). The broker adds the response to the
reply queue R, and ack(resp) back to the client. This means the
broker introspects the message type and if it is a publication, the
broker traverse the client connection pool, filters out the subscribers
by examining the subscription table using filter(ST'), and finally
delivers the publication to all subscribers on the topic.

Each valid client request is executed through the whole cycle
and the broker is capable of executing multiple concurrent requests.
This is enabled by the Paxos variant in use. Our Goxos framework
provides Multi Paxos [25], Batch Paxos [25] and Fast Paxos [26]
for the time being. In our P2S application, we use Multi Paxos
with o = 10 concurrent Paxos instances. We further describe the
evaluation in §4.

4. EVALUATIONS

In this section, we evaluate both our ZapViewers application with
different replication degrees and the original non-replicated ver-
sion. We evaluate end-to-end latency, throughput, and scalability
under different settings.

4.1 Experiment Setup

All experiments are carried out in our computing cluster composed
of GNU/Linux CentOS 6.3 machines connected via Gigabit Eth-
ernet. Each machine is equipped with a quad-core 2.13GHz Intel
Xeon E5606 processor with 16GB RAM.

For our experiments, we obtained recorded event logs from a real
commercial IPTV provider. The experiments are carried out using
1, 3, 5, and 7 broker replicas. The experiments using only 1 broker
are our baseline, as they represent the non-replicated ZapViewers
application. The experiments using 3—7 broker replicas allows our
system to tolerate 1-3 crash failures. We use up to 24 event pub-
lishers, with each event publisher simulating 180,000 STBs, and
a small number of subscribers. In the real deployment, each STB
caches local channel changes for channels with retention longer
than 3 seconds. These cached events are sent to the server every
10 seconds. Indeed, the number of the event publishers (STBs) is
typically large, while the number of the IPTV viewership statistic
subscribers (e.g., TV broadcasters and other commercial entities)
is relatively small. However, while the event volume produced by
each STB is relatively low, the aggregate becomes significant.

In all experiments, we use pipelined Multi Paxos [25] with o0 =
10. That is, ten distinct Paxos instances can be decided concur-
rently. Even though they are decided concurrently, their processing
takes place sequentially. Each Paxos instance comprises a batch of
STB events to be processed by the broker replicas in sequence.

4.2 End-to-End Latency

We first assess the end-to-end latency. Herein, we define end-to-
end latency as the duration between the sending of an event and the
corresponding receive at an active subscriber. The latter is inferred
from the notification corresponding to the source event. For calcu-
lating end-to-end latency, we record a timestamp when a publica-
tion is issued by a publisher, and this timestamp is kept by brokers
in the execution result that is delivered to any subscriber. The sub-
scriber is therefore able to calculate the latency by comparing the
original publisher’s timestamp and local time.

Figure 6 shows the latency of our ZapViewers application in dif-
ferent configurations, namely non-replicated, with 3, 5, and 7 repli-
cas, each tolerating 0, 1, 2, and 3 crash failures, respectively. We
observe an increase of end-to-end latency in all four experiments
as we increase the number of P2S event publishers. We vary the
number of publishers from 1 to 24.

End-to-End Latency(ms)

NN RN
Ty

N NN

—_
w

6 12
Number of P2S Event Publishers

BaNrEBaEP2S (3)HEP2S (5)H0P2S (7)

[\

4

Figure 6: End-to-end latency for various numbers of publishers

The latency of the original non-replicated Zap Viewers applica-
tion varies from 1.98 ms under light load up to 2.32 ms under high
load. As expected, all experiments with our replicated ZapView-
ers implementation show higher latencies than the non-replicated
version. That is, we observe an overhead of 0.58 ms (29%) under
light load, and 1.23 ms (49%) under high load. Still, from our sub-
scribers’ point of view, this latency overhead is barely noticeable.

Also as expected, the latency gradually increases as the number
of publishers increases. Since we pipeline events using the Goxos
library, the latency increase is small. For the non-replicated broker,
the latency overhead of accommodating 24 publishers instead of
just 1 corresponds to 0.34 ms (17%). In comparison, with 3, 5, and
7 brokers, latencies are 0.69 ms (26%), 0.81 ms (30%), and 0.78 ms
(28%) higher when the number of concurrent P2S event publishers
grows from 1 to 24.

We also see that higher replication degrees (indicated by the dif-
ferent bars in Figure 6), imposes only marginal latency overhead.

4.3 Broker Throughput

We assess the broker throughput for the same configurations as in
our latency evaluation, as shown in Figure 7. We define broker
throughput as the number of publications that are processed by the
broker per second. We run experiments in a pipelined manner, with
ten distinct instances decided concurrently.

We first observe that for small workloads, all experiments achieve
almost identical throughput. With fewer than 6 publishers, the
throughput reduction is less than 6% between non-replicated broker
and the 7-replica broker.

T T T T T T

) 80 |-

E

g

o)

=

N

a 40

<

£y —e— NR

2

E 20l —=—P25(3) | |
—eo—P2S (5)
—— P2S (7)

L1 ! ! \ \ \

Lll1
123456 89 12 15 18 21 24
Number of P2S Event Publishers

Figure 7: Broker throughput for varying number of publishers.

When the number of publishers is higher than 5, the non-replicated
application achieves slightly higher throughput than its replicated
counterparts. The throughput drops as little as 4.58% compared
to the non-replicated application. As shown in Figure 7, the peak
throughput of the original non-replicated application, when there
are 24 publishers, is 90.00 publications per second. In compari-
son, the peak throughput with 3, 5, and 7 replicas are 80.04, 77.25,
and 75.03 publications per second, which are 9.96%, 14.16%, and
16.63% lower than non-replicated service, respectively.

Higher replication degree results in consistently lower through-
put. Similarly to latency, the overhead caused by this is 6.5% on
average. This is explained by the fact that in Paxos, higher replica-
tion degree does not cause significant performance degradation.

4.4 Scalability

We evaluate the scalability of our ZapViewers application by vary-
ing both replication degrees and the number of event publishers.

Table 1 presents the latency and throughput degradation of the
ZapViewers application as the replication degree varies. We com-
pare each instance with a counterpart that has one replication de-
gree lower. As shown in the table, the non-replicated application
outperforms all replicated counterparts. With only 1 publisher, the
latency of the non-replicated application is 29.9% higher than that
of P2S (3). With 24 event publishers, it is 40.08% higher. However,
latency drop becomes less noticeable as the replication degree in-
creases. For instance, with 1 publisher, latency of P2S (5) is 3.51%
lower than that of P2S (3). With 24 event publishers, it is only
6.46% lower.

Throughput decreases slower on the other hand. When the work-
load is fairly low, with fewer than 3 event publishers, the differ-
ence is barely detectable. The non-replicated application is 11.11%

Table 1: Latency (upper table) and throughput (lower table)
drop of ZapViewers, compared to the counterpart that has one
replication degree lower. #p is the number of publishers.

#p=1 #p=3 #p=6 #p=12 #p=24
P2S (3) 29.29% 33.1% 38.30% 41.12% 40.08%
P2S(5) 351% 1.88% 3.59% 6.95% 6.46%
P2S(7) 452% 5.18% 1.38% 4.95% 2.60%
P2S (3) 250% 1.25% 4.58% 571% 11.11%
P2S(5) 0.00% 0.00% 4.80% 5.68% 3.43%
P2S(7) 0.00% 0.00% 4.12% 3.61% 291%

Table 2: Latency drop (upper table) and throughput rise (lower
table) of ZapViewers, compared with its own performance
when p differs. Values with parenthesis in red represent pos-
itive improvement. The number of publishers is denoted by #p.

#pl—3 #p3—6 #p6—12 #pl2—24
NR 0.50% 1.00% 6.46% 841%
PIS(3)T351% 490% 8.63% 7.61%
PIS(3) 189% 6.66% 12.15% 7 7.12%
PIS (7 TTT255% 281% 16.:09% 471%
NR (200.00%) (100.00%) (16.66%) (28.57%)
PIS (3 (205.12%) T (92.43%) T(15.38%) T (21.21%)
PIS(5) (305 12%) (83 19%) (14339 (547095)
BIS (7)Y (305.12%) T (75.63%) T (14.:83%) T (95.00%)

higher than P2S (3). With higher replication degree, throughput
varies between 2.91% and 3.43%.

We also compare the performance change for replication de-
gree when the number of P2S event publishers varies, as shown
in Table 2. For each application, latency rises with more event
publishers. With high replication degree, the latency gradually be-
comes stable, approaching the peak latency when the number of
P2S event publishers is more than 12. When the number of event
publishers is greater, the latency decreases much slower, thereafter.

This trend is consistent with the improvement of throughput when
the number of event publishers differs. As shown in the table, under
low workload, throughput improves almost linearly. When there
are more than 6 event publishers, the increase becomes gradually
slower. For instance, from 6-12 event publishers, P2S (7) through-
put grows 14.83%, or 2.47% per publisher. Also from 12-24 event
publishers, growth is 25%, or 2.08% per publisher. This indicates
the brokers have almost the maximum processing rate.

To summarize, P2S scales very well when the replication degree
and the number of event publishers increases. This demonstrates
that our system can retain its efficiency even when we build a sys-
tem that can tolerate more failures.

S. RELATED WORK

The topic of constructing reliable pub/sub systems has been widely
studied [5-13]. By using periodic subscription [5], subscribers
actively re-issue their subscriptions. By flooding the messages,
this can prevent message loss and ensure subscribers eventually re-
ceive all the publications to their subscriptions. On the other hand,
through event retransmission [6, 7], brokers exchange acknowledg-
ment messages to ensure that the corresponding messages are de-
livered. Both periodic subscription and event retransmission work

well in preventing message loss instead of handling broker/link fail-
ures. In order to guarantee that messages are correctly delivered
in the presence of broker/link failures, several publications have
proposed redundant paths [6, 8,9, 13], where the overlay topology
includes redundant paths to ensure that at least one path between
the corresponding publisher and subscriber is correct. For instance,
Gryphon [12] uses virtual brokers, where each broker maps to one
or more physical brokers, such that at least one broker is correct and
forwards the messages along the path. Indeed, the most straight-
forward way to use redundant paths is to replicate every broker.
However, this may consume high bandwidth and become very in-
efficient in the absence of failures. Furthermore, prior work in this
area usually ensures that messages or events are delivered, where
the order of events are not considered.

There has been considerable work in developing total order algo-
rithms [27,28]. A class of algorithms arranges brokers into groups
and uses interactions between groups to compute message order [29].
This type of solution works well under static topology since group
membership knowledge can be difficult to maintain in dynamic net-
works. On the other hand, it is natural to use a single sequencer or
several decentralized sequencers [30,31] to handle message order.
A single sequencer is easier to maintain but is a single point of fail-
ure. In contrast, decentralized sequencers are more resilient to fail-
ure but require every message to be routed to a certain sequencer.
This imposes topology constraints and can be less efficient.

Several efforts [9, 10] exploit the topology overlay in pub/sub
systems to achieve certain ordering properties in the presence of
broker/link failures. Kazemzadeh et al. [9] use a tree-based topol-
ogy and achieve per-publisher total order by having each broker
forward redundant messages to several brokers. A stronger pair-
wise total order is achieved by Zhang et al. [10], where the inter-
secting broker of different paths resolves the possible conflicts of
message order. However, this has a more complex algorithm to han-
dle broker failures and is less efficient in the presence of failures.
Recent work [32] has also used similar tree-based overlay approach
to tolerate a configurable number of arbitrary malicious failures in
any part of the pub/sub system, with small divergence from tradi-
tional pub/sub specifications and forwarding schemes. This work
achieves BFT based on replicated state machines using authenti-
cated broadcast and reliable broadcast instead of Paxos. It assumes
an initial structure of tree overlay and ensures FIFO order. How-
ever, it is not extended to achieve total order of publications. In
comparison, P2S takes the simplest yet effective topology and algo-
rithm to achieve pairwise total ordering in the presence of failures.
In addition, the flexibility of the framework and our fault tolerance
library make it easy to adapt to more scalable systems.

Fault tolerance techniques for highly available stream process-
ing usually consider that no data is dropped or duplicated [33-36].
Most of them assume a failover model and require f + 1 replicas to
mask up to f simultaneous failures. Similar to some of the pub/-
sub approaches, replicated replicas ensure that at least one correct
replica continues processing. When an upstream replica fails, the
downstream replica switches to another correct upstream replica.
Since at least one correct path exists between the source and des-
tination, the data stream can be delivered. SGuard [35] uses repli-
cated file systems to achieve fault tolerance. Each data chunk is
replicated on multiple nodes. The data sent by a client is spread to
all replicated nodes so that at least one piece is available. It also re-
lies on a single fault-tolerant coordinator using rollback recovery.

6. CONCLUSION

This paper presents P2S, a simple fault-tolerant pub/sub solution
that replicates brokers in a centralized pub/sub architecture. Our
solution fits naturally in many industrial settings that need certain
resilience, without having to rely on complex, overlay networks.

We have shown how our P2S framework adopts traditional fault
tolerant protocols to the pub/sub communication paradigm. P2S
provides sophisticated generic programming interfaces for higher
level pub/sub application builders, and is built upon our Paxos-
based, fault-tolerant Goxos library. Goxos switches between var-
ious Paxos variants according to different fault tolerance require-
ments. The flexibility and versatility of the P2S framework aims to
minimize the effort required for future development of any pub/sub
systems with various resilience needs.

Our results, evaluated based on recorded data logs obtained from
a real IPTV service provider, indicate that P2S is capable of pro-
viding reliability at low cost. With a minimum degree of replica-
tion, P2S imposes low performance overhead when compared to
the original non-replicated counterpart.

In future work, we aim to experiment with the P2S framework
on Byzantine failure models. We believe that there is a need for
Byzantine fault tolerance in certain industrial applications, and be-
lieve our work can be extended to adapt to BFT as well.

Acknowledgements

Sisi Duan and Sean Peisert’s contributions to this research were
supported in part by the National Science Foundation under Grant
Number CCF-1018871. Ms. Duan’s work was also supported in
part by a Leiv Eiriksson Mobility Grant from RCN. Haibin Zhang
was supported by NSF grants CNS 0904380 and CNS 1228828.
Tiancheng Chang and Hein Meling’s contributions were supported
by the Tidal News project under grant no. 201406 from RCN. Any
opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect
those of any of the employers or sponsors of this work.

7. REFERENCES

[1] J. Reumann, “Pub/Sub at Google,” CANOE Summer School,
2009.

[2] T. Redkar, Windows Azure Platform. Apress, 2010.

[3] R. Monson-Haefel and D. Chappell, Java Message Service.
O’Reilly & Associates, Inc., 2000.

[4] F. Budinsky, G. DeCandio, R. Earle, T. Francis, J. Jones,

J. Li, M. Nally, C. Nelin, V. Popescu, S. Rich, A. Ryman,
and T. Wilson, “Websphere studio overview,” IBM Syst. J.,
vol. 43, no. 2, pp. 384419, Apr. 2004.

[5] Z. Jerzak and C. Fetzer, “Soft state in publish/subscribe,” in
DEBS, 2009, pp. 1-12.

[6] R. Chand and P. Felber, “Xnet: A reliable content-based
publish/subscribe system,” in SRDS, 2004, pp. 264-273.

[7] C. Esposito, D. Cotroneo, and A. S. Gokhale, “Reliable
publish/subscribe middleware for time-sensitive
internet-scale applications,” in DEBS, 2009.

[8] R. S. Kazemzadeh and H.-A. Jacobsen, “Reliable and highly
available distributed publish/subscribe service,” in SRDS,
2009, pp. 41-50.

[9] R.S. Kazemzadeh and R. Vitenberg, “Opportunistic
multipath forwarding in content-based publish/subscribe
overlays,” in Middleware, 2012, pp. 249-270.

[10] K. Zhang, V. Muthusamy, and H. Jacobsen, “Total order in
content-based publish/subscribe systems,” in ICDCS, 2012.
[11] T. Pongthawornkamol, K. Nahrstedt, and G. Wang,
“Reliability and timeliness analysis of fault-tolerant
distributed publish / subscribe systems,” in /CAC, 2013.
[12] S. Bhola, R. E. Strom, S. Bagchi, Y. Zhao, and J. S.

[13]
[14]

[15]

[16]

(171

(18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]
[26]
[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

Auerbach, “Exactly-once delivery in a content-based
publish-subscribe system,” in DSN, 2002, pp. 7-16.

A. C. Snoeren, K. Conley, and D. K. Gifford, “Mesh based
content routing using xml,” in SOSP, 2001, pp. 160-173.

L. Lamport, “The part-time parliament,” ACM Trans.
Comput. Syst., vol. 16, no. 2, pp. 133-169, May 1998.

S. M. Jothen, “Acropolis: Aggregated Client Request
Ordering by Paxos,” Master’s thesis, University of Stavanger,
2013.

T. E. Lea, “Implementation and Experimental Evaluation of
Live Replacement and Reconfiguration,” Master’s thesis,
University of Stavanger, 2013.

F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: a tutorial,” ACM Comput. Surv.,
vol. 22, no. 4, pp. 299-319, Dec. 1990.

The Go Project. (2013) The go programming language.
[Online]. Available: http://golang.org/

L. Lamport, “Paxos made simple,” ACM SIGACT News,
vol. 32, no. 4, pp. 18-25, December 2001.

H. Meling and L. Jehl, “Tutorial Summary: Paxos Explained
from Scratch,” in OPODIS, 2013, pp. 1-10.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec, “The many faces of publish/subscribe,” ACM
Comput. Surv., vol. 35, no. 2, pp. 114-131, Jun. 2003.

S. M. Jothen and T. E. Lea, “Goxos: A paxos
implementation in the go programming language,”
University of Stavanger, Tech. Rep., 2012.

P. Evensen and H. Meling, “A paradigm comparison for
collecting TV channel statistics from high-volume channel
zap events,” in DEBS, 2011, pp. 317-326.

, “AdScorer: an event-based system for near real-time
impact analysis of television advertisements (industry
article),” in DEBS, 2012, pp. 85-94.

L. Lamport, “Paxos made simple, fast, and byzantine,” in
OPODIS, 2002, pp. 7-9.

——, “Fast paxos,” Distributed Computing, vol. 19, no. 2,
pp. 79-103, 2006.

H. Garcia-Molina and A. Spauster, “Ordered and reliable
multicast communication,” ACM Trans. Comput. Syst.,

vol. 9, no. 3, pp. 242-271, 1991.

K. P. Birman, A. Schiper, and P. Stephenson, “Lightweigt
causal and atomic group multicast,” ACM Trans. Comput.
Syst., vol. 9, no. 3, pp. 272-314, 1991.

L. L. Peterson, N. C. Buchholz, and R. D. Schlichting,
“Preserving and using context information in interprocess
communication,” ACM Trans. Comput. Syst., vol. 7, no. 3,
pp. 217-246, 1989.

C. Lumezanu, N. Spring, and B. Bhattacharjee,
“Decentralized message ordering for publish/subscribe
systems,” in Middleware, 2006, pp. 162—-179.

G. A. Wilkin, K. R. Jayaram, P. Eugster, and A. Khetrapal,
“Faidecs: Fair decentralized event correlation,” in
Middleware, 2011, pp. 228-248.

L. Jehl and H. Meling, “Towards byzantine fault tolerant
publish/subscribe: A state machine approach,” in
Proceedings of the 9th Workshop on Hot Topics in
Dependable Systems, 2013.

Y. Gu, Z. Zhang, F. Ye, H. Yang, M. Kim, H. Lei, and Z. Liu,
“An empirical study of high availability in stream processing
systems,” in Middleware (Companion), 2009, p. 23.

J.-H. Hwang, U. Cetintemel, and S. B. Zdonik, “Fast and
highly-available stream processing over wide area networks,”
in ICDE, 2008, pp. 804-813.

Y. Kwon, M. Balazinska, and A. G. Greenberg,
“Fault-tolerant stream processing using a distributed,
replicated file system,” PVLDB, vol. 1, no. 1, pp. 574-585,
2008.

G. Jacques-Silva, B. Gedik, H. Andrade, K.-L.. Wu, and

R. K. Iyer, “Fault injection-based assessment of partial fault
tolerance in stream processing applications,” in DEBS, 2011,
pp- 231-242.

