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Abstract—We revisit the problem of preserving causality in
Byzantine fault-tolerant (BFT) atomic broadcast protocols, a
requirement first proposed by Reiter and Birman (TOPLAS
1994). While over the past three decades, this requirement
has been met through the deployment of expensive public-
key threshold cryptosystems, we propose three novel, secure
causal BFT protocols without using public-key cryptography.
We implement and evaluate these protocols, showing that they
significantly outperform existing constructions that use threshold
cryptosystems.

I. INTRODUCTION

State machine replication [48, 61] is a fundamental soft-
ware approach to enabling highly available services in prac-
tical distributed systems and cloud computing platforms
(e.g., Google’s Chubby [18] and Spanner [28], Apache
ZooKeeper [42]). Despite its great success, it is extremely
difficult to enable confidentiality—an essential goal for secure
outsourcing and computation—in such an approach (without
sacrificing functionality). In fact, the confidentiality problem
has become a major obstacle to a wider adoption of cloud
storage and cloud computing where replication plays a central
goal [54].

In this paper, we consider one specific confidentiality
goal—causality preservation, a notion that dates back to
early ’90s [57] and is particularly relevant to modern cloud
computing. Let us briefly describe the notion below.

In a replicated service, when a client issues a request,
some faulty replicas may create a new request which will
be executed before the original request of the client. This
will violate the causal order of client requests. For example,
Reiter and Birman [57] considered a trading service that trades
stocks. When a client issues a request to purchase stock shares,
a faulty replica may be able to collude with another corrupt
client to issue a derived request for the same stock. If the
correct replicas deliver the new request before the request of
the correct client, the new request may adjust the demand for
the stock and the service may raise the price to the correct
client. Another example is to consider a service that registers
names (e.g., DNS service) in a “first come, first served”
manner [19, 24]. A faulty replica may observe an interesting
name being registered, and it may then register the name for
another client, thereby violating the causality of the client
requests.

It is important to note that causality preservation with
malicious parties is a confidentiality related notion, and in fact
a rare one that only makes sense for a replicated service, but

not for one provided by a centralized server. Moreover, causal-
ity preservation is indeed desirable in practical distributed
systems: ZooKeeper [42] is one such system that achieves
both total order and causal order in the crash failure model.

Reiter and Birman’s construction [57] combines an atomic
broadcast protocol and a public-key threshold cryptosys-
tem [64]. The clients encrypt their requests with the threshold
cryptosystem. Replicas run the underlying atomic broadcast
protocol to reach an agreed total order on the ciphertexts.
Then each replica uses its corresponding decryption key to
generate its decryption share which is broadcast to the rest of
the replicas. Each replica waits for enough decryption shares to
recover and then deliver the client request. Cachin, Kursawe,
Petzold, and Shoup (CKPS) [21] refined and formalized the
notion of secure causal atomic broadcast and built a provably
secure construction from a labeled chosen-ciphertext-attack
(CCA) secure threshold cryptosystem [64]. Recently, Duan
and Zhang [35] presented a confidential BFT protocol that also
achieves causality preservation using only symmetric cryp-
tography. However, their construction lies outside our model,
because it relies on a specific architecture (that separates
agreement from execution) and requires a larger number of
nodes.

While these existing constructions use encryption as the key
component, we propose three novel and efficient constructions
without explicitly using encryption. When designing these
protocols, we keep three goals in mind—provable security,
generality, and efficiency. All of our protocols are provably
secure in the definitions that we formalize: we provide not
only general and expressive frameworks based on generic
primitives, but efficient and secure instantiations.

Our contributions. We make the following contributions:

We extend the definitional framework of CKPS [21] to
include more general scenarios for secure causal BFT
protocols.
We provide a generic framework for a secure causal
protocol. It can be based on any fair BFT protocol [27,
34] and any non-malleable commitment with associated-
data, a new primitive we define. We offer an efficient
instantiation (CP1) which is secure in the random oracle
model (ROM).
We go on to study the case of benign clients subject to
crash failures. In this case, we also provide a generic
framework that is built on top of a new and generic
distributed cryptographic primitive—asynchronous robust



secret sharing. We suggest two concrete instantiations
(CP2 and CP3) that are even more efficient than CP1.
We implemented and evaluated all these protocols. We
show that our protocols significantly outperform the exist-
ing constructions based on threshold cryptosystems [21,
23].

While our primary goal is to build efficient secure causal
BFT protocols, our work also provides a firm foundation for
this primitive. Existing secure causal BFT protocols based
on threshold cryptosystems can only be realized using spe-
cific number-theoretic assumptions (e.g., the Decisional Diffie-
Hellman (DDH) assumption). However, because of our general
frameworks, such protocols can be built from generic prim-
itives such as a one-way function, or be even information-
theoretically secure.

II. RELATED WORK

Atomic broadcast and Byzantine fault-tolerant protocols.
According to the recent literature, the concept of atomic
broadcast in the presence of Byzantine failures is more used
to describe consensus-based protocols that do not explicitly
distinguish clients and servers [21, 52], while the notion of
Byzantine fault-tolerant (BFT) protocols is more used to
describe state machine replication with Byzantine replicas
(and Byzantine clients) [1, 4, 26, 27, 29, 33, 44]. Throughout
the paper, we do not distinguish atomic broadcast protocols
from BFT protocols and use them interchangeably.

Our constructions (CP1, CP2, and CP3) are all general and
can be built from any types of BFT protocols. Namely, the un-
derlying BFT protocols may be consensus-based or sequencer-
based, and they may work in synchronous, partially asyn-
chronous, or asynchronous environments. (See [30] for a com-
prehensive survey.) However, our constructions have more vis-
ible performance improvements for the recent sequencer-based
BFT state machine replication protocols using symmetric
cryptography [1, 4, 26, 27, 29, 33, 44], compared to consensus-
based ones that employ threshold cryptography [21].
Causal order in crash fault-tolerant distributed systems.
The notion of causality in distributed systems in the crash
failure model was first introduced by Lamport [47] and later
extended by Lamport [49]. The formalization is centered on
the “happened before” or “precedes” relation. Since then,
a number of causal broadcast protocols that tolerate crash
failures [14, 36, 46, 62] were proposed.
Confidentiality in distributed systems. Confidentiality is a
central goal in dependable distributed programs. There are
many types of confidentiality notions though.

A line of work aims at achieving confidentiality in dis-
tributed file systems or storage systems that only support
store and retrieve operations [2, 12, 25, 38, 43, 45, 60]. This is
achieved by letting clients apply encryption or secret sharing
to the data before the data is uploaded to the system. The
servers neither see the underlying data nor process the data.
Belisarius [53] additionally supports add operations by lever-
aging the additive homomorphic property of the underlying
secret sharing scheme.

However, it is highly challenging to support arbitrary oper-
ations while maintaining confidentiality and availability of the
user data in distributed systems. Despite significant progress
in secure outsourcing and computation, it has largely focused
on the case of a single server (e.g., fully homomorphic
encryption [39], ORAM [40]), or generic and inefficient multi-
party computation (e.g. [11]). There are two notable works [35,
65] that achieve reliability and confidentiality simultaneously,
yet requiring a special architecture support. The first is a
confidential BFT protocol by Yin, Martin, Venkataramani,
Alvisi, and Dahlin [65]. Their protocol leverages the idea
of separating agreement from execution and uses expensive
threshold signatures. Assuming the same architecture, Duan
and Zhang [35] provided a much more efficient construction
that uses only symmetric encryption. Moreover, both protocols
require a lot more nodes than a conventional BFT protocol.
Duan and Zhang also proved that their confidential BFT
protocol implies a secure casual BFT protocol. Nevertheless,
the implication applies only to their specific architecture.
Symmetric cryptography vs. threshold cryptography.
Cachin and Poritz [23] built a system, SINTRA, which consists
of an implementation of a secure causal atomic broadcast
protocol [21]. As reported by the authors [23, pp. 9], their
atomic broadcast protocol using extensive threshold cryptog-
raphy is several orders of magnitude slower than PBFT [26] (in
the LAN setting). The evaluation on a confidential BFT [35]
and a BFT storage system [53] demonstrated a similar result:
the protocols using only symmetric cryptography are several
orders of magnitude faster than the ones using expensive
threshold signatures [65]. Our evaluation is in line with these
prior findings: our constructions CP1, CP2, and CP3 add little
overhead to the underlying BFT protocol, and they all signif-
icantly outperform the one based on threshold cryptosystems
(CP0) in both the LAN and WAN settings.

III. PRELIMINARIES AND SYSTEM MODEL

Notation. If n is an integer then [1..n] denotes the set
{1, · · · , n}. If S is a set then s

$← S denotes the operation
of selecting an element s of S uniformly at random. If A
is a randomized algorithm then we write z $←A(x, y, · · · ) to
indicate the operation that runs A on inputs x, y, · · · and fresh
and uniformly random coins, and outputs z.
BFT protocols. We consider Byzantine fault-tolerant (BFT)
protocols (i.e. atomic broadcast protocols), where f out of n
replicas can behave arbitrarily and a computationally bounded
adversary can coordinate faulty replicas to compromise the
system. A BFT protocol may be sequencer-based [26, 44]
or consensus-based [21, 52]. A secure BFT protocol should
satisfy the following properties:
Agreement. If any correct replica delivers a message m, then
every correct replica delivers m.
Total order. If a correct replica has delivered m1,m2, · · · ,ms

and another correct replica has delivered m′1,m
′
2, · · · ,m′s′ ,

then mi = m′i for 1 ≤ i ≤ min(s, s′).



Liveness. If a message m is input to n − f correct replicas,
then all correct replicas will eventually deliver m.
Secure causal BFT protocols. Input causality prevents the
faulty replicas from creating a derived request that is delivered
and executed before the client’s request. It is important to note
that it is equally unacceptable for the derived request to be
identical to the client’s request.

The problem of preserving input causality in BFT atomic
broadcast protocols was first introduced by Reiter and Birman
(RB) [57]. The notion was later refined by Cachin, Kursawe,
Petzold, and Shoup (CKPS) [21].

We note that the definition of CKPS is not general enough
to cover all possible scenarios or constructions. Specifically,
CKPS explicitly models input causality using threshold en-
cryption (as in RB), but there may exist constructions that
do not exploit threshold encryption (as we show in this
paper). To put it sightly differently, while CKPS uses an
(“indistinguishability-style”) secrecy notion for encryption,
causality preservation seems more of a non-malleability no-
tion [32] for a primitive that is not necessarily related to
encryption.1

Therefore, we will extend the CKPS definitional framework
to capture more general scenarios, and introduce appropriate
security definitions tailored for different constructions.
Fair BFT protocols For one of our constructions, fairness
plays a vital role. Fairness prevents the BFT service from
unfairly delaying or dropping some clients’ requests but not
others. For instance, Aardvark [27] implements a fair and
efficient sequencer-based BFT protocol. (The idea is that if
the sequencer fails to enforce fairness, a view change will be
triggered.) ByzID [34] is another fair BFT protocol (that uses
small trusted components).
Authenticated and private channels. Throughout the paper,
we assume authenticated channels which can be easily realized
using message authentication codes (MACs). In our secret
sharing based constructions, we additionally require private
channels for the communication carrying secret shares. Au-
thenticated and private channels only add very slight overhead
to authentication-only channels, and the most efficient instan-
tiation is to use authenticated encryption (with associated-
data) [58, 59].
ROM. For some constructions in the paper, we use the
random oracle model (ROM) [8], where scheme algorithms
and adversary algorithms will have access to a random oracle.

IV. BUILDING BLOCKS

In this section, we review labeled threshold cryptosystems
(for CP0), and introduce two new cryptographic primitives—
non-malleable commitment with associated-data (for CP1) and
asynchronous robust secret sharing (for CP2 and CP3).

1For encryption schemes, message secrecy and message non-malleability
are equivalent (if considering chosen ciphertext attacks) [7, 10]. This may not
be the case for other primitives. For instance, the non-malleability notion for
a commitment scheme is orthogonal to its secrecy notion.

A. Labeled Threshold Cryptosystems

We review robust labeled threshold cryptosystem (i.e.
threshold encryption) [64] where a public key is associated
with the system and a decryption key is shared among all
the servers. Syntactically, a (t, n) threshold encryption scheme
ThreshEnc consists of the following algorithms. A probabilis-
tic key generation algorithm TGen takes as input a security
parameter l, the number n of total servers, and threshold
parameter t, and outputs (pk, vk, sk), where pk is the public
key, vk is the verification key, and sk = (sk1, · · · , skn) is a list
of private keys. A probabilistic encryption algorithm TEnc
takes as input a public key pk, a message m, and a label lb,
and outputs a ciphertext c. A probabilistic decryption share
generation algorithm ShareDec takes as input a private key
ski, a ciphertext c, and a label lb, and outputs a decryption
share σ. A deterministic share verification algorithm Vrf takes
as input the verification key vk, a ciphertext c, a label lb, and
a decryption share σ, and outputs b ∈ {0, 1}. A deterministic
combining algorithm Comb takes as input the verification key
vk, a ciphertext c, a label lb, a set of t decryption shares, and
outputs a message m, or ⊥ (a distinguished symbol).

We require the threshold encryption scheme to be chosen
ciphertext attack (CCA) secure against an adversary that
controls up to t − 1 servers. We also require consistency of
decryptions, i.e., no adversary that controls up to t−1 servers
can produce a ciphertext and two t-size sets of valid decryption
shares such that they yield different plaintexts.

There are a few efficient constructions for (labeled) CCA
secure threshold cryptosystems [5, 16, 64].

B. Commitment Schemes

We will use a number of commitment schemes for
different purposes, including conventional commitments,
non-malleable commitments (NMC), non-malleable commit-
ments with associated-data (NM-CAD), and concurrent non-
malleable commitments.
Conventional commitment scheme. A commitment scheme
is a protocol that allows one to commit to a chosen value. The
value will remain hidden until the moment when the committer
decides to open the commitment. A conventional commitment
requires the regular hiding and binding properties.
Non-malleable commitment with associated-data. A
scheme for (non-interactive) non-malleable commitment
with associated-data, or NM-CAD, is a triple Π =
(Cgen,Commit,Open). Cgen takes as input a security param-
eter l and outputs a commitment key ck. Commit takes as
input the commitment key ck, a message m ∈ M (message
space) and a header h ∈ H (header space) and outputs (c, d),
where c is the commitment and d is the decommitment or the
opening; we write Commithck(m) for Commit(ck, h,m). Open
takes as input ck, h, c, m, and d, and outputs a decision bit;
we write Openhck(c,m, d) for Open(ck, h, c,m, d).

We impose the conventional correctness requirement: for
any ck ∈ Cgen(1l), m ∈ M, and h ∈ H, if Commithck(m) =
(c, d), then Openhck(c,m, d) = 1.



A syntactic difference between NM-CAD and the con-
ventional commitment scheme is that NM-CAD supports
associated-data (i.e., header). The function of the associated-
data resembles that of the label in threshold encryption—to
distinguish instances of the protocols.

For our purpose, we require computational hiding, compu-
tational binding, and non-malleability with respect to opening
and associated-data.
Hiding. It is computationally infeasible for any adversary
A to output two messages m0,m1 ∈ M such that A
can distinguish between their corresponding commitment
values c0, c1. Formally, for any probabilistic polynomial-
time (PPT) adversary A = (A1,A2), we define
Advhiding

Π,A (1l) = Pr[b = b′|ck $← Cgen(1l), (m0,m1, h, st) ←
A1(ck), b

$←{0, 1}, (c, d)
$← Commithck(mb), b

′ $←A2(h, c, st)],
where st is the state information.
Binding. It is computationally infeasible for any adversary
A to output two different messages m 6= m′ to the same
commitment c and header h. Formally, for any PPT adversary
A, we define Advbinding

Π,A (1l) = Pr[(m 6= m′) ∧ (m,m′ 6=
⊥)|ck $← Cgen(1l), (h, c,m,m′, d, d′)

$←A(ck),Openhck(c,m,
d) = 1,Openhck(c,m′, d′) = 1].

Non-malleability. We require the commitment scheme to be
non-malleable. There are two notions of non-malleability
though: non-malleability with respect to commitment [32] and
non-malleability with respect to opening [31]. The former
requires that it is infeasible to find a commitment to a message
which is related to another committed value. The latter requires
that it is infeasible to open the modified commitment given the
decommitment of the original commitment. The former is a
strictly stronger notion [37].

Our application only needs the weaker notion—non-
malleability with respect to opening. However, our specific
construction meets the stronger one.

Our notion of non-malleability with respect to opening
is an extension and generalization of the conventional one,
because we require that non-malleability hold with respect to
associated-data as well.

We provide a simulation-based definition as depicted
in Fig. 1. We fix a PPT relation R which takes inputs from a
space M×M and outputs a bit.

We consider a three-stage adversary A = (A1,A2,A3). In
the first stage, adversary A1 selects a message space M and
a header space H from which a message m and a header
h are sampled respectively. In the second stage, adversary
A2 is given a hint hm on the message m (as an output
of a PPT function hint(ck, ·)) that represents some a-prior
information that may be gathered by the adversary from other
executions of the protocols. Note that we do not need to define
a similar function for the header space H, as the target header
will be given to the adversary in cleartext. A2 now has to
output a “new” commitment. In the last stage, adversary A3

is given the committed value and the opening of the original
commitment and must output the corresponding values for the
new commitment.

Expnm-oad-0
Π,A (l) Expnm-oad-1

Π,S (l)

ck
$← Cgen(1l) ck

$← Cgen(1l)

(M,H, s1)
$←A1(ck) (M,H, s1)

$←S1(ck)

m
$←M(1l) m

$←M(1l)

htm
$← hint(ck,m) htm

$← hint(ck,m)

h
$←H(1l) h

$←H(1l)

(c, d)
$← Commithck(m) (c, d)

$← Commithck(m)

(h∗, c∗, s2)
$←A2(h, c, s1, htm) (h∗, c∗, s2)

$←S2(s1, htm)

(m∗, d∗)
$←A3(m, d, s2) (m∗, d∗)

$←S3(m, d, s2)
return 1 iff return 1 iff
Openh

∗

ck (c∗,m∗, d∗) = 1∧ Openh
∗

ck (c∗,m∗, d∗) = 1∧
(m,h) 6= (m∗, h∗) ∧ (m,h) 6= (m∗, h∗)∧
(m∗ 6= ⊥) ∧ (h∗ 6= ⊥) ∧ (m∗ 6= ⊥) ∧ (h∗ 6= ⊥) ∧
R(m,m∗) = 1 R(m,m∗) = 1

Fig. 1. Game for non-malleability with respect to opening and
associated-data (NM-OAD).

For the relation R, unlike prior works, we do not need to
rule out the possibility of “message copying” (by insisting
R(m,m) = 0 with probability 1), as the adversary may well
win the game by simply modifying the header.

We require that for any adversary which, on input the
commitment (h, c), finds a new commitment to a related
message, there exists a simulator which can simulate the
commitment and the decommitment just as well without the
original commitment.

Let Π be an NM-CAD, let R be a relation, let
A = (A1,A2,A3) be any PPT adversary, and let S =
(S1,S2,S3) be the simulator. We define the NM-OAD ad-
vantage of A, AdvNM-OAD

Π,A (l), as Pr[Expnm-oad-0
Π,A (l) = 1] −

Pr[Expnm-oad-1
Π,S (l) = 1].

Remark. In defining NM-OAD, we chose to use a notion
similar to non-malleability with respect to opening. But one
can easily modify the experiment to define a stronger notion
that resembles the notion of non-malleability with respect to
commitment, by requiring the simulator to output m∗ and d∗

given ck and htm only. But as we will see, our NM-OAD
definition suffices for our application.

A definitional choice we made is that in order to win the
game, adversary should produce a pair (m,h) 6= (m∗, h∗). In
fact, according to our protocol (CP1), it is sufficient to require
(m 6= m∗, h 6= h∗) or (m = m∗, h 6= h∗).2 Our definition
yields a stronger one.

Our definition echoes some other cryptographic primitives
such as authenticated encryption with associated-data [58] and
adaptive one-way function [55].
Extensions and simplifications on commitment with
associated-data. A conventional commitment scheme can be
easily obtained by removing the header in its algorithms.
The definition can be also easily extended to the concurrent

2This is because according to our protocol, the recipient of the commitment
will also verify the authenticity of the message.



setting [56] where the adversary is receiving commitments to
multiple messages m1, · · · ,ms, while attempting to commit
to related messages m′1, · · · ,m′s. This is a stronger notion
than non-malleable commitment.
Generic constructions and efficient instantiations. It was
shown that concurrent NMC can be built from any one-way
function [51]. It is easy to show that concurrent NM-CAD can
be built from any adaptive one-way function [55].

Building NMC is trivial in the ROM; one just needs to
commit to a random coin in addition to the message itself.

Concurrent NM-CAD can be built likewise but with a small
tweak. For simplicity, let M = {0, 1}l and H = {0, 1}l.
Fix a hash function H: K × {0, 1}3l → {0, 1}l. Cgen simply
returns a uniformly chosen hash key k $←K. Given a message
m and a header h, Commit selects a uniformly random coin
r, computes c = Hk(h,m, r), and returns (c, d), where d = r.
Given h, c, m, and d, Open checks if c = Hk(h,m, d) and
returns a decision bit. The scheme can be easily shown to be
NM-OAD in both the stand-alone and concurrent settings.
A brief explanation. NM-CAD is designed specifically for
CP1. NMC also works for CP1, but it requires slightly higher
bandwidth. Since we consider concurrent requests, we will
correspondingly need concurrent non-malleable commitments
(with associated-data). For CP2, a conventional commitment
scheme is sufficient (explanation coming shortly).

C. Secret Sharing Schemes
In a (t, n) secret-sharing scheme (SS), the dealer distributes

shares of the secret to n servers such that: 1) any group of t
(or more) servers can reconstruct the secret, and 2) any group
of fewer than t servers cannot obtain any partial information
on the secret. One well-known SS is Shamir’s secret sharing
scheme [63] which is based on polynomial interpolation.
Asynchronous robust secret sharing. We consider asyn-
chronous robust secret sharing, where the dealer is correct,
up to t − 1 servers may be Byzantine, and the environments
may be asynchronous. To formalize this, we extend robust
secret sharing (RSS) by Bellare and Rogaway (BR) [9] to
asynchronous settings.

A (t, n) asynchronous robust secret-sharing (ARSS) proto-
col consists of a distribute stage and reconstruct stage. In the
distribute stage, a dealer runs Share on s and outputs a n-
vector S = S[1..n], and sends the server i the share S[i]. In
the reconstruct stage, each server broadcasts its share to the
rest of the servers. Each server waits for enough shares in a
set S′ and runs Rec on S′ to return a secret or a distinguished
symbol ⊥.

The above syntax is natural, simple, but rather restrictive:
the distribute stage consists of a best-effort broadcast, and the
reconstruction stage consists of best-effort broadcast among
servers. We find, however, the simple syntax is sufficient to
provide efficient constructions. Also, in our syntax, the number
of shares needed for reconstruction, u, where t ≤ u ≤ n, does
not have to be fixed. As we will see, typical choices of u such
as t, t+ f , and n− f , may restrict the possibility of efficient
constructions.

Experiment Exppriv
ARSS(A)

T
$←A; (s0, s1, st) $←A(T )

b
$←{0, 1}

S
$← Share(sb)

b′
$←A(ST , st)

if b′ = b then return 1
return 0

Experiment Exprec
ARSS(A)

T
$←A; (s, st) $←A(T )

S
$← Share(s)

S′
T

$←A(ST , st)
S′←ST t S′

T ; R←R ∪ {S′[i]}
if s 6= Rec(R) return 1
return 0

Fig. 2. Privacy game (Left) and recoverability game (Right) with adversary
A and an ARSS scheme.

We consider two security definitions for ARSS—privacy
and recoverability in Fig. 2. We assume a static adversary who
must decide at the beginning of its execution which players T
to corrupt.

In the privacy game, adversary A decides which servers to
corrupt before its execution. A chooses two secrets s0 and
s1 such that |s0| = |s1|. Then the game chooses a hidden
bit b and runs Share(sb) to produce a n-vector S. The shares
corresponding to the corrupted set T , ST , are then given to A
who will then output its guess b′ for the hidden bit. Formally,
we define Advpriv

ARSS(A) = Pr[Exppriv
ARSS(A) = 1]− 1/2.

In the recoverability game, adversary A statically corrupts a
set of T servers. A then chooses a secret s and the game sam-
ples S from Share(s). A replaces the shares ST with S′T . The
new n-vector of shares S′ is now ST tS′T . The reconstructor
collects shares in a set R and runs Rec(R) to return a secret
or a distinguished symbol. A wins the game if s 6= Rec(R).
We define Advrec

ARSS(A) = Pr[Exprec
ARSS(A) = 1].

In BR’s privacy game, adversary can corrupt up to t − 1
servers, while in their recoverability game, adversary can
corrupt up to n − (t − 1) servers. In both of our games, we
require that adversary can only corrupt up to t − 1 servers.
On the one hand, this suffices for our purpose, as we will
consider the BFT setting where adversary can corrupt at most
t−1 servers. On the other, this relaxation makes it possible to
design highly efficient constructions and information-theoretic
constructions.
Implying non-malleability. One may consider defining non-
malleability for ARSS just as in encryption and commitment
schemes. Specifically, one may consider a malleability ad-
versary that corrupts up to t − 1 servers and attempts to
produce shares that can be recovered to a new secret s′ that is
“meaningfully related” to the original secret s. We claim that
this is not needed, as our privacy definition simply implies
non-malleability. Unlike encryption and commitment schemes,
ARSS is an unkeyed primitive, where both Share and Rec
algorithms do not take as input a key. Once some malleability
adversary produces shares for some secret s′ related to some s,
it essentially knows the entire s′. One can then construct
another adversary that attacks the privacy game.

Note that in order for the implication to hold, the adversary
can corrupt up to t − 1 servers. This implication does not
hold if the adversary corrupts more servers. In fact, the
malleability property (in particular, the linear property) on



secret sharing can be used to build fault-tolerant multi-party
computation [11].
Remark. We intentionally make the definitions not to depend
on a security parameter, as the security may hold in an
information-theoretic setting. However, it is easy to extend
our definitions to both concrete and asymptotic settings. For
the asymptotic setting, we should avoid using the length of
the secret as the security parameter.

Our definition of ARSS is a strengthening of RSS and
a simplification of asynchronous verifiable secret sharing
(AVSS) [20]. ARSS strengthens RSS to handle asynchrony
issues. In BR’s definition, networks are synchronous and the
reconstructor will mark each missing share using a distin-
guished symbol. But we consider asynchronous environments,
where there is no known upper bound on processing and
message transmission delays.

ARSS relaxes AVSS in the sense that in ARSS the dealer is
correct but in AVSS the dealer may be malicious. In addition,
our syntax is much simpler, but we believe this does not restrict
the possibility of efficient constructions for our purpose. Last,
our definitions on privacy and recoverability with general
adversaries are more general (and formal) than those in [20].
Efficient constructions. We present two ARSS
constructions—ARSS1 that has computational security
and ARSS2 that is information-theoretically secure. Both
of the two constructions are as efficient as a regular secret
sharing scheme, and several orders of magnitude faster
than the most efficient AVSS [20] for any reasonably large
(practical) n. For our purpose, we assume that f = t − 1
servers may behave arbitrarily and n ≥ 3f + 1.
A computational construction—ARSS1. ARSS1 is general: it
uses any conventional secret sharing scheme and any conven-
tional commitment scheme in a black-box manner.

Let SS be any (t, n) secret sharing scheme with
(Share′,Rec′) algorithms and let CS = (Cgen,Commit,Open)
be any (conventional) commitment scheme with a commit-
ment key ck. We define a (t, n) ARSS scheme ARSS1 with
(Share,Rec) algorithms as defined below. In the distribute
stage, given a secret s, Share runs (c, d)

$← Commitck(s)
(where c and d are the commitment and the opening respec-
tively), runs Share′(s, d) to get a n-vector S′ = S′[1..n], and
returns S = S[1..n] such that S[i] = (c, S′[i]) for i ∈ [1..n].

In the reconstruct stage, the reconstructor keeps waiting for
shares to come and maintains sets of shares tagged by the same
c. It drops other sets once the size of some set R reaches t. It
stops accepting new shares once the size of the set R reaches
2f + 1. In the meanwhile, once the size of the set R reaches
f + 1, it attempts to recover the secret by first running Rec′

to get some (s, d) and then verifying if Openck(c, s, d) = 1.
In the worst case, the reconstructor needs to verify at most(

2f+1
f

)
possible combinations to recover s.

If the reconstructor is also a share holder (i.e., server), the
above algorithm can be simplified: each correct server does
not need to send the reconstructor the commitment or maintain
multiple sets.

Instead of requiring a NMC, a conventional commitment
scheme is sufficient. We argued that as long as an ARSS
scheme is secure with respect to the privacy game, it is also
secure in the sense of non-malleability. Still, let us explain
the underlying idea for this construction. The non-malleability
adversary’s goal is not to make the commitment malleable
but to provide a related secret. In fact, if the non-malleability
adversary wins the non-malleability game for ARSS1 then we
can construct an efficient adversary that attacks the hiding
property of the commitment scheme.

Note that Share is invoked on both the secret and the
opening. Sharing the secret only does not suffice, because later
on we will also need the opening to verify the correctness of
the commitment scheme. To efficiently instantiate the scheme,
one can use the hash based commitment scheme described
earlier. We do not claim the originality of the scheme, as
we are not sure if similar constructions appeared elsewhere.
Rather, we show that ARSS can be rather easily obtained both
generically and efficiently.

An information-theoretical construction—ARSS2. ARSS2 can
be adapted from a construction by Harn and Lin (HL) [41].
Padilha and Pedone [53] first used it in a BFT storage system
for a purpose that is different from ours. In their scheme,
the clients run both the Share and Rec algorithms, but in our
scheme the Rec algorithm is invoked among the servers and re-
constructors are also share holders. Moreover, in their system,
the data is shared among servers and the servers are unable to
see or process the data. We just regard provably fitting ARSS2
in our generic framework (and provably building secure causal
BFT from ARSS in general) as our contributions.

ARSS2 is designed specifically for Shamir’s SS. ARSS2
with (Share,Rec) algorithms can be built from a (t, n)
Shamir’s SS with (Share′,Rec′) algorithms. Share is identical
to Share′. The reconstructor waits for f + 2 shares to see if
they are consistent shares (i.e., they are points on the same
polynomial). If not, the reconstructor will know that at least
one out of the f + 2 shares is faulty. In the worst case, the
reconstructor has to wait for 2f +2 shares in total, and would
try all

(
2f+2
f+2

)
combinations.

In ARSS2, to check whether g (g ≥ t) shares are consistent,
one only needs to check whether the interpolation of m
points yields a polynomial with degree t−1. This consistency
check requires only one Lagrange interpolation operation, and
recovering the secret will take another interpolation operation.

In comparison, ARSS1 needs one Lagrange interpolation
operation and one hash evaluation operation. However, for
both the failure-free and failure scenarios, ARSS2 needs a
larger number of shares to recover the secret.

V. THE PROTOCOLS

We begin by reviewing CP0 and then present three new se-
cure causal BFT protocols—CP1, CP2, and CP3. We describe
them in the client-server computing model.



A. CP0

CP0 definition [21]. In addition to the conventional safety and
liveness notions, CKPS defined three notions that are directly
related to causality preservation—message integrity, message
consistency, and message secrecy. The first two ensure that
correct replicas receive the same underlying plaintext, while
the last one is related to confidentiality.

CKPS divided the protocol into schedule and reveal pro-
cesses. The schedule process corresponds to the conven-
tional atomic broadcast protocol, and the reveal process is
an additional process run after each replica completes the
atomic broadcast. CKPS requires that for correct replicas two
consecutive schedule or reveal processes are not allowed. The
idea is that only after a replica schedules a ciphertext, it can
reveal and broadcast its decryption share.

Let’s first recall the message secrecy definition. The adver-
sary interacts with the correct replicas in an arbitrary way. It
then chooses two messages m0, m1, and a tag ID and provides
them to an encryption oracle. The oracle randomly chooses
a bit b ∈ {0, 1}, computes an encryption c of mb with tag
ID, and gives the ciphertext to the adversary. The adversary
then continues to play with the correct replicas subject to the
condition that no correct replica schedules c with ID. Finally,
the adversary outputs a bit b′ as its guess.

Regarding message integrity, the adversary chooses some
message m and ID and gives them to the encryption oracle.
The adversary wins the game if some correct replica schedules
a ciphertext but the associated plaintext m′ is different from
m. Message consistency requires that if two correct replicas
schedule the same ciphertext c with tag ID, then the associated
plaintexts are the same.

CP0 construction. CKPS uses a CCA secure (f + 1, n)
robust labeled threshold encryption scheme. A trusted dealer
is responsible for initializing the system keys: it generates a
system public key (so that everyone can encrypt messages
using the public key) and distributes the private key shares
to the corresponding replicas (so that any group of f + 1
replicas can collectively decrypt the ciphertext). Alternatively,
an expensive and interactive key setup protocol can be used
for the setup.

In the schedule process, a client generates a labeled thresh-
old ciphertext, which is then sent to the replicas. Then replicas
run the underlying atomic broadcast protocol to schedule this
ciphertext. After scheduling the ciphertext, each replica will
reveal its decryption share to the rest of the replicas such that
correct replicas will be able to reconstruct the plaintext.

It is important to use “labeled” threshold encryption where
the label should contain a unique identifier ID (including
the client identity and the message identifier). Moreover,
the communication between all parties (clients and replicas)
should use authenticated channels. Each replica should verify
that the label in the ciphertext indeed contains the identity of
the sender.

B. An Extended Definition Framework

CKPS’s definition is coupled with threshold encryption. We
extend their framework to support general primitives.

In our framework, a client may send a message m via
encryption, commitment scheme, or secret sharing. The de-
livery of a secure causal protocol consists of two steps:
schedule and reveal. In the schedule process, a message of
the form (ID, schedule, D) will be committed. D may be a
ciphertext (as in CP0), a NM-CAD (as in CP1), a conventional
commitment (as in CP2), or an empty message (as in CP3). In
the reveal process, a message of the form (ID, reveal,m) will
be delivered. We require that there must not be two consecutive
schedule and reveal processes.

As in CKPS, we define message secrecy, message integrity,
and message consistency. We follow CKPS to define mes-
sage consistency: if two correct replicas committed the same
schedule message, then the plaintext content recovered by
each replica for that message will be the same, with all but
negligible probability. However, message secrecy and message
integrity will be modeled depending on concrete constructions.

C. CP1

Defining message secrecy and integrity. The definition for
CP1 is related to a commitment scheme. We model message
secrecy using message hiding and message non-malleability.
Message hiding requires the adversary not to learn any infor-
mation on the committed value before the committer decides
to reveal it. We now describe message non-malleability. The
adversary is given the commitment key ck and interacts with
the correct replicas in an arbitrary way. It then chooses a
non-trivial message space M and a header space H. An
commitment oracle randomly chooses a message and a header
and computes (c, d)

$← Commithck(m). The adversary is given
(h, c) and now has to generate a new commitment (h′, c′)
(before (h, c) gets scheduled). After the adversary is given the
message m and the opening d, it needs to output its message
m′ and the opening d′ for the new commitment such that
R(m,m′) = 1 for some PPT function R. (We do not need to
worry about unopened commitments, as they will be removed
according to our protocol.) The adversary wins the game if
either (m 6= m′, h 6= h′) or (m = m′, h 6= h′). Note that the
adversary will not win the game for the case of h = h′, as in
this case a derived commitment will be trivially rejected by
correct replicas, because in our protocol, replicas will need to
verify if the header of a message matches the message sender.

Message integrity can be defined as follows. We consider an
adversary that interacts with the correct replicas and is given
a commitment (h, c) for some message m. We require the
following probability to be negligible: some correct replicas
scheduled (h, c) in the schedule process, but the associated
committed value is not equal to m.
Construction. CP1 is built on a NM–CAD Π =
(Cgen,Commit,Open) and a fair BFT protocol that can tol-
erate up to f Byzantine failures. CP1 has at least two benefits
compared to CP0: first, CP1 does not rely on a trusted setup or



an expensive, interactive setup; second, CP1 can be efficiently
realized using only symmetric cryptography.

The basic idea of CP1 is as follows: in the schedule process,
a commitment to some chosen value m with an identifier ID
is delivered via the underlying BFT protocol; in the reveal
process, m and the associated opening d also go through the
same BFT protocol using the same identifier ID.

Let’s describe CP1 in detail. The system fixes a commitment
key ck using Cgen. Given a client message m, the client picks
a unique identifier (denoted as ID) as the commitment header
h. It then computes (c, d)

$← CommitIDck(m). The client then
sends (ID, schedule, c) to replicas. Replicas need to verify
the authenticity of the message and also verify if the header
matches the identity of the client. Then replicas run the
BFT protocol to schedule the commitment and then notify
the client that they have delivered the message. As in a
conventional BFT protocol, once receiving f + 1 matching
reply messages, the client will initiate the reveal process by
sending (ID, reveal, (m, d)) to the replicas. The replicas verify
the correctness of the message and the opening and then run
the BFT protocol again to deliver the message. Then replicas
can process the message and send the reply messages to the
client.

We implement the following optimization: While the repli-
cas are waiting for an opening to be delivered, they still batch
and schedule client requests (but do not run the reveal process).

This completes the description of failure-free scenarios. But
what could go wrong here? First, clients may fail to send
messages and openings “in time.” Second, replicas could delay
or drop messages and openings too. Both scenarios can block
the service.

To defend against these circumstances, we first implement
an amplification step for a common type of client crash
failures: in the reveal process, once a correct replica verifies
the message and the opening, it simply forwards them to the
rest of the replicas. The message and the opening serve as
a transferable witness, and they do not need to be authenti-
cated. This is rather different from the protocols using similar
techniques.

To (completely) resolve these, we require the replicas to
periodically get rid of tentative requests, i.e., committed but
unopened client requests. In sequencer-based protocols, this
procedure can be initiated by the primary. This procedure
only makes sense for a fair BFT protocol, because otherwise
replicas might unfairly delay some correct clients’ reveal
messages such that the corresponding requests are cleaned by
the cleanup procedure.

An underlying assumption is that the delay between a
correct client and at least f+1 correct replicas (which watch if
primary enforces fairness and trigger view change otherwise)
cannot be significantly larger than the delay between another
correct client and the f + 1 correct replicas. We define the
channel delay to be the maximum number of steps (measured
by tentative requests) that a specific request can be later than
another correct request issued at the same time. We also define
the fairness delay to be the maximum number of steps (also

measured by tentative requests) that a specific request can be
delayed. Clearly, to ensure correctness, we just require that
the cleanup cycle be larger than the sum of the channel delay
and fairness delay. If the primary does not initiate the cleanup
protocol according to this rule, a view change will be triggered.

It is easy to see that CP1 allows batching and if the
underlying BFT protocol tolerates faulty clients so does CP1.

THEOREM 1. Assuming a secure NM-CAD (satisfying hiding,
binding, and NM-OAD) and a fair BFT protocol, CP1 is a
secure causal BFT protocol.
Remark. There are a few seemingly feasible approaches that
actually do not work. One such approach is to first deliver
the commitment using the BFT protocol and then use a
best-effort broadcast protocol to broadcast the opening. This
does not work because, for instance, the client may simply
crash. A second approach is to first deliver the commitment
and then use a reliable broadcast protocol to broadcast the
opening. Liveness might be impeded because BFT and reliable
broadcast have different means to ensure liveness and tentative
requests from correct clients may be falsely cleaned.

One may also use NMC instead of NM-CAD. In order
for this to work, each client needs to append ID to the
committed message, and in the reveal process replicas will
verify if ID matches the identity of the sender. This needs
extra bookkeeping for the protocol and extra communication
for amplification. More importantly, NM-CAD is a more
natural fit for the scenario where associated data need not
be privacy-protected. Depending on constructions, the method
using NMC may also incur additional computational overhead.

D. CP2 and CP3

We consider the scenario where clients may be only sub-
ject to crash failures. This scenario models a large set of
realistic circumstances: 1) Clients are honest-but-curious, a
commonly used assumption in distributed systems and multi-
party computation. 2) Clients may be some upper-level appli-
cations already made intrusion-tolerant. In practical distributed
systems and cloud computing platforms, both clients and
servers may be replicated. 3) Clients may not be interested in
attacking the safety property of the BFT service, but just aim
at compromising causality. This is because attacking causality
can allow clients to gain immediate benefits, while attacking
the consistency of the system may not.
Definition of security for CP2 and CP3. We define for CP2
and CP3 message secrecy, message integrity, and message
consistency in a way that resembles ARSS. As in ARSS, there
is no need to consider message non-malleability because in the
SS setting, the notion is implied by message secrecy.
A generic construction from ARSS. A secure causal BFT
protocol can be built from any BFT protocol and any (f+1, n)
ARSS scheme with (Share, Rec) algorithms as follows.

A client runs the ARSS Share algorithm on its request m
to generate a n-vector S = S[1..n]. The client then sends
each replica i a request (ID, schedule, S[i]). Each replica
needs to maintain a mapping between S[i] and ID. In the



schedule process, the replicas run the underlying BFT protocol
to order the message identifier ID. When each replica i delivers
the identifier, it starts the reveal process by broadcasting
(ID, reveal, S[i]) to the rest of the replicas. When a replica
collects enough shares, it runs Rec to decide a secret or a
distinguished symbol.

The communication carrying secret shares (i.e., the com-
munication in the secret distribute and reconstruct stages)
needs authenticated and private channels. For rest of the
communication, we just need authenticated channels.

THEOREM 2. The above generic construction built from a BFT
protocol and an ARSS scheme is a secure causal BFT protocol.
Instantiating CP2 and CP3. CP2 and CP3 can be obtained
by instantiating the above generic construction using ARSS1
and ARSS2 respectively.

For CP2, we use the specific ARSS1 algorithm for the case
where reconstructors are also share holders. More specifically,
in the schedule process, the replicas will agree upon not only
ID but also the commitment c. In the reveal process, it can
reject any faulty shares with a commitment different from c.
This leads to a more efficient construction.

For both CP2 and CP3, if clients are faulty (either Byzantine
or not), input causality is never violated, but both safety and
liveness can be compromised, just as those BFT protocols that
do not tolerate Byzantine faulty clients.

E. Summary

We summarize the three frameworks and the four instan-
tiations for secure causal BFT protocols in TABLE I. The
framework using threshold encryption can be realized using
only specific number-theoretic assumptions. It requires either a
trusted dealer or an expensive interactive protocol to distribute
the system keys. This is also the only framework using
expensive threshold cryptography. All the rest of the frame-
works have efficient instantiations. The framework using fair
BFT and NMC can be based on rather generic cryptographic
primitives such as one-way functions. The framework using
ARSS deals with the case of benign clients and can be divided
into two categories—using ARSS1 and using ARSS2. The first
one can be based on any commitment scheme (thus one-way
function) and any secret sharing scheme. The second one is
based Shamir’s SS and is information-theoretically secure.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation

Our test setting comprises a cluster of 15 machines
(2.13GHz Xeon processor, 4GB RAM), 5 of which serve as
client nodes. Experiments are carried out on DeterLab [17].

We utilize PBFT [26] as our baseline and as the under-
lying BFT protocol to instantiate CP0, CP1, CP2, and CP3.
Our PBFT implementation is based on that of [4] and we
implement our fairness mechanism according to [27]. While
our protocols also apply to asynchronous consensus-based
BFT protocols (e.g., the one in CKPS [21] implemented in
SINTRA [23]), the performance difference is less visible

compared to efficient BFT protocols such as PBFT. The reason
is that in addition to threshold encryption operations, there are
other expensive operations for those asynchronous protocols.

We use HMAC [6] as the MAC algorithm to build authen-
ticated channels. We use a composed authenticated encryption
with associated-data scheme [58] to build authenticated and
private channels. Specifically, we apply CTR mode encryption
(using AES-256) and then compute its HMAC. We use SHA-
256 to instantiate the NM-CAD (for CP1) and the conventional
commitment scheme (for CP2).

For CP0, we extend Baek and Zheng’s threshold cryp-
tosystem [5] to securely support labels. We then modify an
implementation of Miller et al. [52] to enable this change.
The implementation uses hybrid encryption to encrypt long
messages. When evaluating this threshold cryptosystem, we
choose a very conservative (insecure) security parameter (less
than 80 bits of security) [15]. Still, CP0 is several orders
of magnitude slower than our three protocols, if the network
latency is small.

B. Evaluation

Overview. We use the Castro and Liskov micro-
benchmarks [26] to assess throughput, latency, scalability, and
performance during failures of all the five protocols—PBFT,
CP0, CP1, CP2, and CP3. In the x/y micro-benchmarks,
clients send x kB requests and receive y kB replies. Clients
invoke requests in a closed-loop, where a client does not start
a new request before receiving a reply for a previous one.
All the protocols implement batching of concurrent requests
to reduce cryptographic and communication overheads.

We benchmark the protocols in two settings: a LAN setting
with 100 MB bandwidth and 0.1 ms latency, and a WAN
setting with 1 MB bandwidth and 120 ms latency. We show
that for both settings, and for both the gracious and uncivil
executions, CP1, CP2, and CP3 add reasonably small overhead
to the underlying PBFT protocol, and they all significantly
outperform CP0.
Latency. We first report the latency evaluation in the LAN
setting. We examine and compare the average latency under
no contention in the 4/0 benchmark, as depicted in TABLE II.
The results for 0/0, 0/4, and 4/4 benchmarks are similar, as
the hybrid encryption for CP0 and symmetric cryptography
for the other four protocols scale well as the length of the
message increases.

We find that CP1 is 79%∼84% slower than PBFT. This is
expected because CP1 essentially runs two rounds of PBFT
to deliver a message. Both CP2 and CP3 have lower latency
than CP1 and higher latency than PBFT. This is also expected,
because CP2 and CP3 only add one more broadcast among
replicas compared to PBFT. We also find that the latency
difference between CP2 (and CP3) and PBFT becomes larger
as the maximum number of faulty replicas f increases.

In contrast, CP0 is several orders of magnitude slower than
the rest of the four protocols. This is because the penalty due
to the expensive threshold cryptography is particularly visible
in the LAN setting. We also report in Fig. 3 the latency for



TABLE I
A COMPARISON. THE COLUMN LABELED “TY” SPECIFIES IF THE SCHEME USES PUBLIC-KEY CRYPTOGRAPHY (PK), SYMMETRIC CRYPTOGRAPHY (SK),

OR IS INFORMATION-THEORETICALLY SECURE (ITS). THE COLUMNS LABELED “BYZANTINE CLIENTS,” “SETUP,” AND“BATCH” SPECIFY IF THE SCHEME
TOLERATES BYZANTINE FAULTY CLIENTS, RELIES ON TRUSTED OR EXPENSIVE, INTERACTIVE SETUP, AND ALLOWS BATCHING, RESPECTIVELY.

frameworks instantiations ty Byzantine clients setup batch generality
BFT+ThreshEnc CP0 pk

√ √ √
no known constructions from generic primitives

Fair BFT+NMC CP1 sk
√

−
√

any (adaptive) one-way function
BFT+ARSS1 CP2 sk − −

√
any commitment scheme and any SS

BFT+ARSS2 CP3 its − −
√

only for Shamir’s SS

TABLE II
LATENCY IN MS (LAN).

Protocol f = 1 f = 2 f = 3

PBFT 0.23 0.24 0.25
CP0 769.13 881.00 1090.59
CP1 0.42 0.43 0.46
CP2 0.25 0.28 0.39
CP3 0.24 0.29 0.43

TABLE III
LATENCY IN MS (WAN).

Protocol f = 1 f = 2 f = 3

PBFT 311.35 382.94 433.41
CP0 1300.03 1429.30 1506.73
CP1 471.39 512.18 591.83
CP2 372.44 400.03 525.29
CP3 479.10 502.14 585.35

each operation in the threshold encryption implementation as
the number of the replicas varies, where “verify ciphertext”
stands for the public verification operation of the ciphertext.

In the WAN setting, the latency difference (see TABLE III)
is comparatively smaller. Yet, CP0 is still roughly three times
as slow as the rest.

0 200 400 600 800 time(ms)

f = 1

f = 2

f = 3

Encrypt Verify ciphertext Decrypt Combine shares

Fig. 3. Latency for each threshold encryption operation for f = 1, 2, 3.

Throughput. We discuss the throughput of all the five proto-
cols with different workloads under contention, where multiple
clients issue requests concurrently. In Fig. 4, we report the
throughput for the case of f = 1 as the number of clients
increases in the LAN setting. We find that all the rest of
the protocols significantly outperform CP0. As the number
of clients increases, CP0’s throughput does not improve as
much. Its peak performance is nearly 15 times lower than that
of PBFT.

With fewer than 40 clients, CP2, CP3, and PBFT have
similar throughput. As the number of clients further increases,
PBFT achieves higher throughput. While CP2 and CP3 have
comparable performance, CP2 has slightly higher throughput.
The reason is that CP3 will need more shares than CP2
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Fig. 4. Throughput for f = 1 in the LAN setting.
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Fig. 5. Throughput for f = 1 in the WAN setting.

to recover the message. The peak throughput observed for
CP2 is around 26% lower than that of PBFT. CP2 and CP3
have consistently better performance than CP1, and their
peak throughput are 38% and 32% higher than that of CP1,
respectively.

We also test the throughput of the five protocols as the
maximum number of faulty replicas f varies, as summarized
in Fig. 6. We observe that the throughput difference between
CP2 and CP3 becomes more visible when f increases. This is
because CP3 needs increasingly more secret shares to recover
the secret, as f increases.

Fig. 5 reports the throughput in the WAN setting. We find
that the throughput of CP1, CP2, and CP3 remains signifi-
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Fig. 6. Peak throughput for f = 1, 2, 3.

cantly higher than that of CP0. An interesting observation is
that CP1 outperforms CP3 as the number of clients increases.
Failure scenarios (in the LAN setting). We first evaluate
the case for CP1 where clients only send the witnesses (i.e.,
the message and the opening) to a fraction of the replicas
but not all, and the replicas are correct. In this case, correct
replicas will run the amplification step to forward the witness.
The forwarded message does not need to be authenticated,
because the witness is transferrable. We observe no obvious
performance difference between this failure scenario and the
failure-free scenario in terms of both latency and throughput,
which confirms our expectations.
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Fig. 7. Throughput for CP1 when clients are faulty.
We then evaluate another scenario for CP1 where clients

are faulty and fail to send the witnesses to any correct replica.
We set the cleanup cycle to be a conservative value—10
times average latency. (Normally, we need not set up a fixed
cleanup cycle, and replicas just count how many requests
have been scheduled after the first tentative request appears.
Yet, in our setting, clients issue requests continuously and it
makes sense to assume a fixed cleanup cycle.) In Fig. 7, we
demonstrate the throughput when there are 5 and 10 clients
respectively. In the experiment, they experience a failure at
1 ms and 1.5 ms, respectively. In both cases, during the

cleanup cycle, the throughput becomes 0. The cleanup cycle
with 5 clients is smaller than that with 10 clients, because the
former has lower average latency. During the cleanup cycle,
the replicas continue to batch and schedule clients requests.
This explains the large throughput improvements after the
cleanup procedure. The performance of the systems resume
after the cleanup procedure. We comment that the performance
fluctuation shares similarities with several state-of-the-art BFT
protocols under failures such as Aliph [4] and BChain [33].
However, CP1 additionally preserves causal order.

TABLE IV
LATENCY FOR CP0, CP2, AND CP3 WITH FAULTY REPLICAS (IN MS).

Protocol f = 1 f = 2 f = 3

CP0 1280.30 1513.40 1671.60
CP2 0.26 0.39 0.50
CP3 0.28 0.43 0.71

Last, we test the performance for CP0, CP2 and CP3 under
Byzantine replica failures in TABLE IV. In this experiment,
we randomly corrupt replicas and ask them to contribute
faulty decryption shares. We find that both CP2 and CP3 have
reasonable performance degradation. However, the difference
between CP2 and CP3 becomes even more visible compared
to that in the failure-free scenario. The reason is that CP3
requires even more communication and computation to re-
cover the message in the average case. In comparison, CP0
becomes much slower, as each replica has to run a lot more
expensive decryption share verification operations to combine
the message.

VII. CONCLUSION

Over the past three decades, all known secure causal atomic
broadcast protocols have been based on expensive threshold
cryptosystems which can be built from only a handful of
number-theoretic assumptions. We revisited the problem by
providing both generic frameworks and efficient instantiations.
In particular, we showed that secure causal atomic broadcast
protocols can be constructed from a variety of cryptographic
primitives; we also showed that our protocols significantly
outperform those based on threshold cryptosystems. At the
core of our constructions are two new cryptographic primitives
which may be of independent interests.
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